Near-field infrared response of graphene on copper substrate

Zhen-Bing Dai, Gui Cen, Zhibin Zhang, Xinyu Lv, Kaihui Liu, Zhiqiang Li

PDF(701 KB)
PDF(701 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43502. DOI: 10.1007/s11467-021-1140-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Near-field infrared response of graphene on copper substrate

Author information +
History +

Abstract

The electronic properties of graphene are very sensitive to its dielectric environment. The coupling to a metal substrate can give rise to many novel quantum effects in graphene, such as band renormalization and plasmons with unusual properties, which are of high technological interest. Infrared nanoimaging are very suitable for exploring these effects considering their energy and length scales. Here, we report near-field infrared nanoimaging studies of graphene on copper synthesized by chemical vapor deposition. Remarkably, our measurements reveal three different types of near-field optical responses of graphene, which are very distinct from the near-field edge fringes observed in the substrate. These results can be understood from the modification of optical conductivity of graphene due to its coupling with the substrate. Our work provides a framework for identifying the near-field response of graphene in graphene/metal systems and paves the way for studying their novel physics and potential applications.

Graphical abstract

Keywords

near-field infrared response / graphene / copper / graphene/metal

Cite this article

Download citation ▾
Zhen-Bing Dai, Gui Cen, Zhibin Zhang, Xinyu Lv, Kaihui Liu, Zhiqiang Li. Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502 https://doi.org/10.1007/s11467-021-1140-3

References

[1]
A. H. Castro Neto , F. Guinea , N. M. R. Peres , K. S. Novoselov , and A. K. Geim , The electronic properties of graphene, Rev. Mod. Phys. 81 (1), 109 (2009)
CrossRef ADS Google scholar
[2]
V. N. Kotov , B. Uchoa , V. M. Pereira , F. Guinea , and A. H. Castro Neto , Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys. 84 (3), 1067 (2012)
CrossRef ADS Google scholar
[3]
D. N. Basov , M. M. Fogler , A. Lanzara , F. Wang , and Y. Zhang , Graphene spectroscopy, Rev. Mod. Phys. 86 (3), 959 (2014)
CrossRef ADS Google scholar
[4]
D. M. Basko and I. L. Aleiner , Interplay of Coulomb and electron–phonon interactions in graphene, Phys. Rev. B 77 (4), 041409 (2008)
CrossRef ADS Google scholar
[5]
M. Lazzeri , C. Attaccalite , L. Wirtz , and F. Mauri , Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite, Phys. Rev. B 78 (8), 081406 (2008)
CrossRef ADS Google scholar
[6]
D. N. Basov , M. M. Fogler , and F. J. García de Abajo , Polaritons in van der Waals materials, Science 354 (6309), aag1992 (2016)
CrossRef ADS Google scholar
[7]
A. N. Grigorenko , M. Polini , and K. S. Novoselov , Graphene plasmonics, Nat. Photonics 6 (11), 749 (2012)
CrossRef ADS Google scholar
[8]
T. Low and P. Avouris , Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8 (2), 1086 (2014)
CrossRef ADS Google scholar
[9]
A. Principi , R. Asgari , and M. Polini , Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate, Solid State Commun. 151 (21), 1627 (2011)
CrossRef ADS Google scholar
[10]
T. Stauber and G. Gómez-Santos , Plasmons in layered structures including graphene, New J. Phys. 14 (10), 105018 (2012)
CrossRef ADS Google scholar
[11]
X. F. Gu , I. T. Lin , and J. M. Liu , Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures, Appl. Phys. Lett. 103, 071103 (2013)
CrossRef ADS Google scholar
[12]
P. Alonso-González , A. Y. Nikitin , Y. Gao , A. Woessner , M. B. Lundeberg , A. Principi , N. Forcellini , W. Yan , S. Vélez , A. J. Huber , K. Watanabe , T. Taniguchi , F. Casanova , L. E. Hueso , M. Polini , J. Hone , F. H. L. Koppens , and R. Hillenbrand , Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy, Nat. Nanotechnol. 12 (1), 31 (2017)
CrossRef ADS Google scholar
[13]
M. B. Lundeberg , Y. D. Gao , R. Asgari , C. Tan , B. Van Duppen , M. Autore , P. Alonso-Gonzalez , A. Woessner , K. Watanabe , T. Taniguchi , R. Hillenbrand , J. Hone , M. Polini , and F. H. L. Koppens , Tuning quantum nonlocal effects in graphene plasmonics, Science 357 (6347), 187 (2017)
CrossRef ADS Google scholar
[14]
A. Principi , E. van Loon , M. Polini , and M. I. Katsnelson , Confining graphene plasmons to the ultimate limit, Phys. Rev. B 98 (3), 035427 (2018)
CrossRef ADS Google scholar
[15]
A. Rodríguez Echarri , J. D. Cox , and F. J. García de Abajo , Quantum effects in the acoustic plasmons of atomically thin heterostructures, Optica 6 (5), 630 (2019)
CrossRef ADS Google scholar
[16]
S. H. Choi , Y. L. Kim , and K. M. Byun , Graphene-onsilver substrates for sensitive surface plasmon resonance imaging biosensors, Opt. Express 19 (2), 458 (2011)
CrossRef ADS Google scholar
[17]
O. Salihoglu , S. Balci , and C. Kocabas , Plasmonpolaritons on graphene-metal surface and their use in biosensors, Appl. Phys. Lett. 100 (21), 213110 (2012)
CrossRef ADS Google scholar
[18]
D. Rodrigo , O. Limaj , D. Janner , D. Etezadi , F. J. García de Abajo , V. Pruneri , and H. Altug , Mid-infrared plasmonic biosensing with graphene, Science 349 (6244), 165 (2015)
CrossRef ADS Google scholar
[19]
F. H. L. Koppens , T. Mueller , P. Avouris , A. C. Ferrari , M. S. Vitiello , and M. Polini , Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9 (10), 780 (2014)
CrossRef ADS Google scholar
[20]
X. Xu , Z. Zhang , L. Qiu , J. Zhuang , L. Zhang , H. Wang , C. Liao , H. Song , R. Qiao , P. Gao , Z. Hu , L. Liao , Z. Liao , D. Yu , E. Wang , F. Ding , H. Peng , and K. Liu , Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply, Nat. Nanotechnol. 11 (11), 930 (2016)
CrossRef ADS Google scholar
[21]
X. Xu , Z. Zhang , J. Dong , D. Yi , J. Niu , M. Wu , L. Lin , R. Yin , M. Li , J. Zhou , S. Wang , J. Sun , X. Duan , P. Gao , Y. Jiang , X. Wu , H. Peng , R. S. Ruoff , Z. Liu , D. Yu , E. Wang , F. Ding , and K. Liu , Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil, Sci. Bull. (Beijing) 62 (15), 1074 (2017)
CrossRef ADS Google scholar
[22]
C. Liu , X. Xu , L. Qiu , M. Wu , R. Qiao , L. Wang , J. Wang , J. Niu , J. Liang , X. Zhou , Z. Zhang , M. Peng , P. Gao , W. Wang , X. Bai , D. Ma , Y. Jiang , X. Wu , D. Yu , E. Wang , J. Xiong , F. Ding , and K. Liu , Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides, Nat. Chem. 11 (8), 730 (2019)
CrossRef ADS Google scholar
[23]
J. Avila , I. Razado , S. Lorcy , R. Fleurier , E. Pichonat , D. Vignaud , X. Wallart , and M. C. Asensio , Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study, Sci. Rep. 3 (1), 2439 (2013)
CrossRef ADS Google scholar
[24]
P. A. Khomyakov , G. Giovannetti , P. C. Rusu , G. Brocks , J. van den Brink , and P. J. Kelly , First-principles study of the interaction and charge transfer between graphene and metals, Phys. Rev. B 79 (19), 195425 (2009)
CrossRef ADS Google scholar
[25]
A. Varykhalov , M. R. Scholz , T. K. Kim , and O. Rader , Effect of noble-metal contacts on doping and band gap of graphene, Phys. Rev. B 82 (12), 121101 (2010)
CrossRef ADS Google scholar
[26]
J. M. Atkin , S. Berweger , A. C. Jones , and M. B. Raschke , Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61 (6), 745 (2012)
CrossRef ADS Google scholar
[27]
X. Chen , D. Hu , R. Mescall , G. You , D. N. Basov , Q. Dai , and M. Liu , Modern scattering-type scanning near-field optical microscopy for advanced material research, Adv. Mater. 31 (24), 1804774 (2019)
CrossRef ADS Google scholar
[28]
A. L. Walter , S. Nie , A. Bostwick , K. S. Kim , L. Moreschini , Y. J. Chang , D. Innocenti , K. Horn , K. F. McCarty , and E. Rotenberg , Electronic structure of graphene on single-crystal copper substrates, Phys. Rev. B 84 (19), 195443 (2011)
CrossRef ADS Google scholar
[29]
D. A. Siegel , C. Hwang , A. V. Fedorov , and A. Lanzara , Electron–phonon coupling and intrinsic bandgap in highlyscreened graphene, New J. Phys. 14 (9), 095006 (2012)
CrossRef ADS Google scholar
[30]
Z. Fei , A. S. Rodin , G. O. Andreev , W. Bao , A. S. McLeod , M. Wagner , L. M. Zhang , Z. Zhao , M. Thiemens , G. Dominguez , M. M. Fogler , A. H. C. Neto , C. N. Lau , F. Keilmann , and D. N. Basov , Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487 (7405), 82 (2012)
CrossRef ADS Google scholar
[31]
J. Chen , M. Badioli , P. Alonso-González , S. Thongrattanasiri , F. Huth , J. Osmond , M. Spasenović , A. Centeno , A. Pesquera , P. Godignon , A. Zurutuza Elorza , N. Camara , F. J. G. de Abajo , R. Hillenbrand , and F. H. L. Koppens , Optical nano-imaging of gate-tunable graphene plasmons, Nature 487 (7405), 77 (2012)
CrossRef ADS Google scholar
[32]
J. A. Gerber , S. Berweger , B. T. O′ Callahan , and M. B. Raschke , Phase-resolved surface plasmon interferometry of graphene, Phys. Rev. Lett. 113 (5), 055502 (2014)
CrossRef ADS Google scholar
[33]
S. S. Sunku , G. X. Ni , B. Y. Jiang , H. Yoo , A. Sternbach , A. S. McLeod , T. Stauber , L. Xiong , T. Taniguchi , K. Watanabe , P. Kim , M. M. Fogler , and D. N. Basov , Photonic crystals for nano-light in moiré graphene superlattices, Science 362 (6419), 1153 (2018)
CrossRef ADS Google scholar
[34]
A. Woessner , Y. Gao , I. Torre , M. B. Lundeberg , C. Tan , K. Watanabe , T. Taniguchi , R. Hillenbrand , J. Hone , M. Polini , and F. H. L. Koppens , Electrical 2 phase control of infrared light in a 350-nm footprint using graphene plasmons, Nat. Photonics 11 (7), 421 (2017)
CrossRef ADS Google scholar
[35]
Z. Shi , X. Hong , H. A. Bechtel , B. Zeng , M. C. Martin , K. Watanabe , T. Taniguchi , Y. R. Shen , and F. Wang , Observation of a Luttinger-liquid plasmon in metallic singlewalled carbon nanotubes, Nat. Photonics 9 (8), 515 (2015)
CrossRef ADS Google scholar
[36]
G. X. Ni , A. S. McLeod , Z. Sun , L. Wang , L. Xiong , K. W. Post , S. S. Sunku , B. Y. Jiang , J. Hone , C. R. Dean , M. M. Fogler , and D. N. Basov , Fundamental limits to graphene plasmonics, Nature 557 (7706), 530 (2018)
CrossRef ADS Google scholar
[37]
A. Woessner , M. B. Lundeberg , Y. Gao , A. Principi , P. Alonso-González , M. Carrega , K. Watanabe , T. Taniguchi , G. Vignale , M. Polini , J. Hone , R. Hillenbrand , and F. H. L. Koppens , Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14 (4), 421 (2015)
CrossRef ADS Google scholar
[38]
Z. Fei , G. O. Andreev , W. Bao , L. M. Zhang , A. S. McLeod , C. Wang , M. K. Stewart , Z. Zhao , G. Dominguez , M. Thiemens , M. M. Fogler , M. J. Tauber , A. H. CastroNeto , C. N. Lau , F. Keilmann , and D. N. Basov , Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface, Nano Lett. 11 (11), 4701 (2011)
CrossRef ADS Google scholar
[39]
S. Dai , Q. Ma , M. K. Liu , T. Andersen , Z. Fei , M. D. Goldflam , M. Wagner , K. Watanabe , T. Taniguchi , M. Thiemens , F. Keilmann , G. C. A. M. Janssen , S. E. Zhu , P. Jarillo-Herrero , M. M. Fogler , and D. N. Basov , Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol. 10 (8), 682 (2015)
CrossRef ADS Google scholar
[40]
G. X. Ni , H. Wang , J. S. Wu , Z. Fei , M. D. Goldflam , F. Keilmann , B. Özyilmaz , A. H. Castro Neto , X. M. Xie , M. M. Fogler , and D. N. Basov , Plasmons in graphene moiré superlattices, Nat. Mater. 14 (12), 1217 (2015)
CrossRef ADS Google scholar
[41]
B. Y. Jiang , G. X. Ni , Z. Addison , J. K. Shi , X. Liu , S. Y. F. Zhao , P. Kim , E. J. Mele , D. N. Basov , and M. M. Fogler , Plasmon reflections by topological electronic boundaries in bilayer graphene, Nano Lett. 17 (11), 7080 (2017)
CrossRef ADS Google scholar
[42]
L. Jiang , Z. Shi , B. Zeng , S. Wang , J. H. Kang , T. Joshi , C. Jin , L. Ju , J. Kim , T. Lyu , Y. R. Shen , M. Crommie , H. J. Gao , and F. Wang , Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15 (8), 840 (2016)
CrossRef ADS Google scholar
[43]
V. E. Babicheva , S. Gamage , M. I. Stockman , and Y. Abate , Near-field edge fringes at sharp material boundaries, Opt. Express 25 (20), 23935 (2017)
CrossRef ADS Google scholar
[44]
B. Y. Jiang , L. M. Zhang , A. H. C. Neto , D. N. Basov , and M. M. Fogler , Generalized spectral method for near-field optical microscopy, J. Appl. Phys. 119 (5), 054305 (2016)
CrossRef ADS Google scholar
[45]
A. S. McLeod , P. Kelly , M. D. Goldflam , Z. Gainsforth , A. J. Westphal , G. Dominguez , M. H. Thiemens , M. M. Fogler , and D. N. Basov , Model for quantitative tipenhanced spectroscopy and the extraction of nanoscaleresolved optical constants, Phys. Rev. B 90 (8), 085136 (2014)
CrossRef ADS Google scholar
[46]
L. Wang , X. Z. Xu , L. N. Zhang , R. X. Qiao , M. H. Wu , Z. C. Wang , S. Zhang , J. Liang , Z. H. Zhang , Z. B. Zhang , W. Chen , X. D. Xie , J. Y. Zong , Y. W. Shan , Y. Guo , M. Willinger , H. Wu , Q. Y. Li , W. L. Wang , P. Gao , S. W. Wu , Y. Zhang , Y. Jiang , D. P. Yu , E. G. Wang , X. D. Bai , Z. J. Wang , F. Ding , and K. H. Liu , Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper, Nature 570 (7759), 91 (2019)
CrossRef ADS Google scholar
[47]
X. Yang , F. Zhai , H. Hu , D. Hu , R. Liu , S. Zhang , M. Sun , Z. Sun , J. Chen , and Q. Dai , Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures, Adv. Mater. 28 (15), 2931 (2016)
CrossRef ADS Google scholar
[48]
L. Novotny and B. Hecht , Principles of Nano-Optics, Cambridge University Press, Cambridge, 2006
[49]
Y. Abate , S. Gamage , Z. Li , V. Babicheva , M. H. Javani , H. Wang , S. B. Cronin , and M. I. Stockman , Nanoscopy reveals surface-metallic black phosphorus, Light Sci. Appl. Carbon 5 (10), e16162 (2016)
CrossRef ADS Google scholar
[50]
O. Frank , J. Vejpravova , V. Holy , L. Kavan , and M. Kalbac , Interaction between graphene and copper substrate: The role of lattice orientation, Carbon 68, 440 (2014)
CrossRef ADS Google scholar
[51]
S. D. Costa , J. Ek Weis , O. Frank , and M. Kalbac , Temperature and face dependent copper–graphene interactions, Carbon 93, 793 (2015)
CrossRef ADS Google scholar
[52]
W. Bao , F. Miao , Z. Chen , H. Zhang , W. Jang , C. Dames , and C. N. Lau , Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol. 4 (9), 562 (2009)
CrossRef ADS Google scholar
[53]
D. Yoon , Y. W. Son , and H. Cheong , Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11 (8), 3227 (2011)
CrossRef ADS Google scholar
[54]
M. Oliva-Leyva and G. G. Naumis , Anisotropic AC conductivity of strained graphene, J. Phys.: Condens. Matter 26 (12), 125302 (2014)
CrossRef ADS Google scholar
[55]
V. M. Pereira , R. M. Ribeiro , N. M. R. Peres , and A. H. Castro Neto , Optical properties of strained graphene, EPL (Europhys. Lett.) 92 (6), 67001 (2010)
CrossRef ADS Google scholar
[56]
G. G. Naumis , S. Barraza-Lopez , M. Oliva-Leyva , and H. Terrones , Electronic and optical properties of strained graphene and other strained 2D materials: A review, Rep. Prog. Phys. 80 (9), 096501 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(701 KB)

Accesses

Citations

Detail

Sections
Recommended

/