Nonreciprocal transition between two indirectly coupled energy levels

Xun-Wei Xu, Hai-Quan Shi, Ai-Xi Chen

PDF(1089 KB)
PDF(1089 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42505. DOI: 10.1007/s11467-021-1138-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonreciprocal transition between two indirectly coupled energy levels

Author information +
History +

Abstract

We propose a theoretical scheme to realize nonreciprocal transition between two energy levels that can not coupled directly. Suppose they are coupled indirectly by two auxiliary levels with a cyclic four-level configuration, and the four transitions in the cyclic configuration are controlled by external fields. The indirectly transition become nonreciprocal when the time reversal symmetry of the system is broken by the synthetic magnetic flux, i.e., the total phase of the external driving fields through the cyclic four-level configuration. The nonreciprocal transition can be identified by the elimination of a spectral line in the spontaneous emission spectrum. Our work introduces a feasible way to observe nonreciprocal transition in a wide range of multi-level systems, including natural atoms or ions with parity symmetry.

Graphical abstract

Keywords

nonreciprocal transition / time reversal symmetry / synthetic magnetic flux / spontaneous emission spectrum

Cite this article

Download citation ▾
Xun-Wei Xu, Hai-Quan Shi, Ai-Xi Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505 https://doi.org/10.1007/s11467-021-1138-x

References

[1]
R. K. Pathria , Statistical Mechanics, 2nd Ed., Butterworth-Heinemann, Oxford, 1996
[2]
A. Einstein , On the quantum theory of radiation, Phys. Z. 18, 121 (1917)
[3]
P. Král and M. Shapiro , Cyclic population transfer in quantum systems with broken symmetry, Phys. Rev. Lett. 87 (18), 183002 (2001)
CrossRef ADS Google scholar
[4]
H. Li , V. A. Sautenkov , Y. V. Rostovtsev , G. R. Welch , P. R. Hemmer , and M. O. Scully , Electromagnetically induced transparency controlled by a microwave field, Phys. Rev. A 80 (2), 023820 (2009)
CrossRef ADS Google scholar
[5]
W. Z. Jia and L. F. Wei , Gains without inversion in quantum systems with broken parities, Phys. Rev. A 82 (1), 013808 (2010)
CrossRef ADS Google scholar
[6]
P. Král , I. Thanopulos , M. Shapiro , and D. Cohen , Twostep Enantio-selective optical switch, Phys. Rev. Lett. 90 (3), 033001 (2003)
CrossRef ADS Google scholar
[7]
Y. Li , C. Bruder , and C. P. Sun , Generalized Stern–Gerlach effect for chiral molecules, Phys. Rev. Lett. 99 (13), 130403 (2007)
CrossRef ADS Google scholar
[8]
Y. X. Liu , J. Q. You , L. F. Wei , C. P. Sun , and F. Nori , Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95 (8), 087001 (2005)
CrossRef ADS Google scholar
[9]
J. E. Mooij , T. P. Orlando , L. Levitov , L. Tian , C. H. van der Wal , and S. Lloyd , Josephson persistent-current qubit, Science 285 (5430), 1036 (1999)
CrossRef ADS Google scholar
[10]
L. Zhou , L. P. Yang , Y. Li , and C. P. Sun , Quantum routing of single photons with a cyclic three-level system, Phys. Rev. Lett. 111 (10), 103604 (2013)
CrossRef ADS Google scholar
[11]
Y. X. Liu , H. C. Sun , Z. H. Peng , A. Miranowicz , J. S. Tsai , and F. Nori , Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit, Sci. Rep. 4 (1), 7289 (2015)
CrossRef ADS Google scholar
[12]
Y. J. Zhao , J. H. Ding , Z. H. Peng , and Y. X. Liu , Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit, Phys. Rev. A 95 (4), 043806 (2017)
CrossRef ADS Google scholar
[13]
Z. H. Wang , C. P. Sun , and Y. Li , Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup, Phys. Rev. A 91 (4), 043801 (2015)
CrossRef ADS Google scholar
[14]
A. Barfuss , J. Kölbl , L. Thiel , J. Teissier , M. Kasperczyk , and P. Maletinsky , Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14 (11), 1087 (2018)
CrossRef ADS Google scholar
[15]
X. W. Xu , Y. J. Zhao , H. Wang , A. X. Chen , and Y. X. Liu , Nonreciprocal transition between two nondegenerate energy levels, Photon. Res. 9 (5), 879 (2021)
CrossRef ADS Google scholar
[16]
J. Zhang , B. Peng , I. M. C. K. Özdemir , Y. X. Liu , H. Jing , X. Y. Lü , Y. L. Liu , L. Yang , and F. Nori , Giant non-linearity via breaking parity-time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92 (11), 115407 (2015)
CrossRef ADS Google scholar
[17]
Y. Jiang , S. Maayani , T. Carmon , F. Nori , and H. Jing , Nonreciprocal phonon laser, Phys. Rev. Appl. 10 (6), 064037 (2018)
CrossRef ADS Google scholar
[18]
X. W. Xu , C. Ye , Y. Li , and A. X. Chen , Enantiomericexcess determination based on nonreciprocal-transitioninduced spectral-line elimination, Phys. Rev. A 102 (3), 033727 (2020)
CrossRef ADS Google scholar
[19]
N. A. Ansari , J. Gea-Banacloche , and M. S. Zubairy , Phase-sensitive amplification in a three-level atomic system, Phys. Rev. A 41 (9), 5179 (1990)
CrossRef ADS Google scholar
[20]
C. A. Blockley and D. F. Walls , Intensity fluctuations in a frequency down-conversion process with three-level atoms, Phys. Rev. A 43 (9), 5049 (1991)
CrossRef ADS Google scholar
[21]
H. Ritsch , P. Domokos , F. Brennecke , and T. Esslinger , Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys. 85 (2), 553 (2013)
CrossRef ADS Google scholar
[22]
M. Brownnutt , M. Kumph , P. Rabl , and R. Blatt , Ion-trap measurements of electric-field noise near surfaces, Rev. Mod. Phys. 87 (4), 1419 (2015)
CrossRef ADS Google scholar
[23]
M. Tomza , K. Jachymski , R. Gerritsma , A. Negretti , T. Calarco , Z. Idziaszek , and P. S. Julienne , Cold hybrid ionatom systems, Rev. Mod. Phys. 91 (3), 035001 (2019)
CrossRef ADS Google scholar
[24]
P. Lodahl , S. Mahmoodian , S. Stobbe , A. Rauschenbeutel , P. Schneeweiss , J. Volz , H. Pichler , and P. Zoller , Chiral quantum optics, Nature 541 (7638), 473 (2017)
CrossRef ADS Google scholar
[25]
T. Ozawa , H. M. Price , A. Amo , N. Goldman , M. Hafezi , L. Lu , M. C. Rechtsman , D. Schuster , J. Simon , O. Zilberberg , and I. Carusotto , Topological photonics, Rev. Mod. Phys. 91 (1), 015006 (2019)
CrossRef ADS Google scholar
[26]
S. Y. Zhu , R. C. F. Chan , and C. P. Lee , Spontaneous emission from a three-level atom, Phys. Rev. A 52 (1), 710 (1995)
CrossRef ADS Google scholar
[27]
S. Y. Zhu and M. O. Scully , Spectral line elimination and spontaneous emission cancellation via quantum interference, Phys. Rev. Lett. 76 (3), 388 (1996)
CrossRef ADS Google scholar
[28]
V. Weisskopf and E. Wigner , Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie, Z. Phys. 63 (1-2), 54 (1930)
CrossRef ADS Google scholar
[29]
M. O. Scully and M. S. Zubairy , Quantum Optics, Cambridge University Press, Cambridge, UK, 1997
[30]
H. F. Song , Y. B. Tang , S. L. Chen , L. J. Du , Y. Huang , H. Guan , and K. L. Gao , Combined experimental and theoretical probe of the branching fractions of the 4P3/2 state in 40Ca+, Phys. Rev. A 100 (5), 052505 (2019)
CrossRef ADS Google scholar
[31]
P. A. Barton , C. J. S. Donald , D. M. Lucas , D. A. Stevens , A. M. Steane , and D. N. Stacey , Measurement of the lifetime of the 3d2D 5/2 state in 40Ca+, Phys. Rev. A 62 (3), 032503 (2000)
CrossRef ADS Google scholar
[32]
A. Kreuter , C. Becher , G. P. T. Lancaster , A. B. Mundt , C. Russo , H. Häffner , C. Roos , W. Hänsel , F. SchmidtKaler , R. Blatt , and M. S. Safronova , Experimental and theoretical study of the 3d2D-level lifetimes of 40Ca+, Phys. Rev. A 71 (3), 032504 (2005)
CrossRef ADS Google scholar
[33]
H. Shao , Y. Huang , H. Guan , Y. Qian , and K. Gao , Precision measurement of the 3d2D3/2-state lifetime in a single trapped 40Ca+, Phys. Rev. A 94 (4), 042507 (2016)
CrossRef ADS Google scholar
[34]
Z. Meir , M. Sinhal , M. S. Safronova , and S. Willitsch , Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the 2P 3/2 state in 40Ca+, Phys. Rev. A 101 (1), 012509 (2020)
CrossRef ADS Google scholar
[35]
P. Staanum , I. S. Jensen , R. G. Martinussen , D. Voigt , and M. Drewsen , Lifetime measurement of the metastable 3d2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string, Phys. Rev. A 69 (3), 032503 (2004)
CrossRef ADS Google scholar
[36]
J. Jin and D. A. Church , Precision lifetimes for the Ca+ 4p2P levels: Experiment challenges theory at the 1% level, Phys. Rev. Lett. 70 (21), 3213 (1993)
CrossRef ADS Google scholar
[37]
S. Mannervik , J. Lidberg , L. O. Norlin , P. Royen , A. Schmitt , W. Shi , and X. Tordoir , Lifetime measurement of the metastable 4d2D3/2 level in Sr+ by optical pumping of a stored ion beam, Phys. Rev. Lett. 83 (4), 698 (1999)
CrossRef ADS Google scholar
[38]
V. Letchumanan , M. A. Wilson , P. Gill , and A. G. Sinclair , Lifetime measurement of the metastable 4d2D5/2 state in 88Sr+ using a single trapped ion, Phys. Rev. A 72 (1), 012509 (2005)
CrossRef ADS Google scholar
[39]
N. Yu , W. Nagourney , and H. Dehmelt , Radiative lifetime measurement of the Ba+ metastable D3/2 state, Phys. Rev. Lett. 78 (26), 4898 (1997)
CrossRef ADS Google scholar
[40]
E. A. Dijck , A. Mohanty , N. Valappol , M. N. N. Portela , L. Willmann , and K. Jungmann , Lifetime of the 5d2D5/2 level of 138Ba+ from quantum jumps with single and multiple Ba+ ions, Phys. Rev. A 97 (3), 032508 (2018)
CrossRef ADS Google scholar
[41]
J. Gurell , E. Biémont , K. Blagoev , V. Fivet , P. Lundin , S. Mannervik , L. O. Norlin , P. Quinet , D. Rostohar , P. Royen , and P. Schef , Laser-probing measurements and calculations of lifetimes of the 5d2D3/2 and 5 d2D5/2 metastable levels in Ba II, Phys. Rev. A 75 (5), 052506 (2007)
CrossRef ADS Google scholar
[42]
M. D. Havey , L. C. Balling , and J. J. Wright , Direct measurements of Ba+ excited-state lifetimes, Phys. Rev. A 15 (6), 2332 (1977)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1089 KB)

Accesses

Citations

Detail

Sections
Recommended

/