Dynamical properties of the Haldane chain with bond disorder

Jing-Kai Fang , Jun-Han Huang , Han-Qing Wu , Dao-Xin Yao

Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 33503

PDF (993KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 33503 DOI: 10.1007/s11467-021-1124-3
RESEARCH ARTICLE

Dynamical properties of the Haldane chain with bond disorder

Author information +
History +
PDF (993KB)

Abstract

By using Lanczos exact diagonalization and quantum Monte Carlo combined with stochastic analytic continuation, we study the dynamical properties of the S = 1 antiferromagnetic Heisenberg chain with different strengths of bond disorder. In the weak disorder region, we find weakly coupled bonds which can induce additional low-energy excitation below the one-magnon mode. As the disorder increases, the average Haldane gap closes at δ ~ 0.5 with more and more low-energy excitations coming out. After the critical disorder strength δc ~ 1, the system reaches a random-singlet phase with prominent sharp peak at ω = 0 and broad continuum at ω > 0 of the dynamic spin structure factor. In addition, we analyze the distribution of random spin domains and numerically find three kinds of domains hosting effective spin-1/2 quanta or spin-1 sites in between. These “spins” can form the weakly coupled longrange singlets due to quantum fluctuation which contribute to the sharp peak at ω = 0.

Graphical abstract

Keywords

Haldane chain / Heisenberg model / magnetic excitation / quantum phase transition / random singlet / disorder / exact diagonalization / quantum Monte Carlo

Cite this article

Download citation ▾
Jing-Kai Fang, Jun-Han Huang, Han-Qing Wu, Dao-Xin Yao. Dynamical properties of the Haldane chain with bond disorder. Front. Phys., 2022, 17(3): 33503 DOI:10.1007/s11467-021-1124-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Binder and A. P. Young , Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys. 58 (4), 801 (1986)

[2]

D. S. Fisher , Random antiferromagnetic quantum spin chains, Phys. Rev. B 50 (6), 3799 (1994)

[3]

R. B. Griffths , Nonanalytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23 (1), 17 (1969)

[4]

D. Basko , I. Aleiner , and B. Altshuler , Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321 (5), 1126 (2006)

[5]

D. A. Abanin , E. Altman , I. Bloch , and M. Serbyn , Manybody localization, thermalization, and entanglement, Rev. Mod. Phys. 91 (2), 021001 (2019)

[6]

G. Refael and J. E. Moore , Entanglement entropy of the random s = 1 Heisenberg chain, Phys. Rev. B 76 (2), 024419 (2007)

[7]

L. Liu , H. Shao , Y. C. Lin , W. Guo , and A. W. Sandvik , Random-singlet phase in disordered two-dimensional quantum magnets, Phys. Rev. X 8 (4), 041040 (2018)

[8]

H. Q. Wu , S. S. Gong , and D. N. Sheng , Randomnessinduced spin-liquid-like phase in the spin-1/2 J1J2 triangular Heisenberg model, Phys. Rev. B 99 (8), 085141 (2019)

[9]

K. Uematsu and H. Kawamura , Randomness-induced quantum spin liquid behavior in the s = 1/2 randombond Heisenberg antiferromagnet on the pyrochlore lattice, Phys. Rev. Lett. 123 (8), 087201 (2019)

[10]

H. Kawamura and K. Uematsu , Nature of the randomnessinduced quantum spin liquids in two dimensions, J. Phys.: Condens. Matter 31 (50), 504003 (2019)

[11]

Z. Ma , Z. Y. Dong , S. Wu , Y. Zhu , S. Bao , Z. Cai , W. Wang , Y. Shangguan , J. Wang , K. Ran , D. Yu , G. Deng , R. A. Mole , H. F. Li , S. L. Yu , J. X. Li , and J. Wen , Disorder-induced spin-liquid-like behavior in kagome-lattice compounds, Phys. Rev. B 102 (22), 224415 (2020)

[12]

M. Wu , D. X. Yao , and H. Q. Wu , Exact diagonalization study of the anisotropic Heisenberg model related to YbMgGaO4, Phys. Rev. B 103 (20), 205122 (2021)

[13]

O. Motrunich , S. C. Mau , D. A. Huse , and D. S. Fisher , Infinite-randomness quantum Ising critical fixed points, Phys. Rev. B 61, 1160 (2000)

[14]

E. Westerberg , A. Furusaki , M. Sigrist , and P. A. Lee , Low-energy fixed points of random quantum spin chains, Phys. Rev. B 55 (18), 12578 (1997)

[15]

S. K. Ma , C. Dasgupta , and C. K. Hu , Random antiferromagnetic chain, Phys. Rev. Lett. 43 (19), 1434 (1979)

[16]

F. Iglói and C. Monthus , Strong disorder RG approach – a short review of recent developments, Eur. Phys. J. B 91 (11), 290 (2018)

[17]

R. A. Hyman , K. Yang , R. N. Bhatt , and S. M. Girvin , Random bonds and topological stability in gapped quantum spin chains, Phys. Rev. Lett. 76 (5), 839 (1996)

[18]

F. D. M. Haldane , Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50 (15), 1153 (1983)

[19]

F. D. M. Haldane , Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Phys. Lett. A 93 (9), 464 (1983)

[20]

K. Damle , Griffths effects in random Heisenberg antiferromagnetic S = 1 chains, Phys. Rev. B 66 (10), 104425 (2002)

[21]

Y. R. Shu , D. X. Yao , C. W. Ke , Y. C. Lin , and A. W. Sandvik , Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valencebond solid, Phys. Rev. B 94 (17), 174442 (2016)

[22]

E. Westerberg , A. Furusaki , M. Sigrist , and P. A. Lee , Random quantum spin chains: A real-space renormalization group study, Phys. Rev. Lett. 75 (23), 4302 (1995)

[23]

T. Hikihara , A. Furusaki , and M. Sigrist , Numerical renormalization-group study of spin correlations in onedimensional random spin chains, Phys. Rev. B. 60 (17), 12116 (1999)

[24]

C. Monthus , O. Golinelli , and Th. Jolicoeur , Percolation transition in the random antiferromagnetic spin-1 chain, Phys. Rev. Lett. 79, 3254 (1997)

[25]

C. Monthus , O. Golinelli , and T. Jolicoeur , Phases of random antiferromagnetic spin-1 chains, Phys. Rev. B 58 (2), 805 (1998)

[26]

H. L. C. Grande , N. Laorencie , F. Alet , and A. P. Vieira , Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings, Phys. Rev. B 89, 134408 (2014)

[27]

R. A. Hyman and K. Yang , Impurity driven phase transition in the antiferromagnetic spin-1 chain, Phys. Rev. Lett. 78 (9), 1783 (1997)

[28]

A. Saguia , B. Boechat , and M. A. Continentino , Strongly disordered antiferromagnetic spin-1 chains with random anisotropy, Phys. Rev. B 58 (1), 58 (1998)

[29]

A. Saguia , B. Boechat , and M. A. Continentino , Phase diagram of the random Heisenberg antiferromagnetic spin- 1 chain, Phys. Rev. Lett. 89 (11), 117202 (2002)

[30]

A. Saguia , B. Boechat , and M. A. Continentino , Quantum phase transition in the random antiferromagnetic spin-1 chain, Phys. Rev. B 62 (9), 5541 (2000)

[31]

Y. Nishiyama , Numerical analysis of the bond-random antiferromagnetic S=1 Heisenberg chain, Physica A 252 (1-2), 35 (1998)

[32]

K. Hida , Density matrix renormalization group study of the Haldane phase in random one-dimensional antiferromagnets, Phys. Rev. Lett. 83 (16), 3297 (1999)

[33]

P. Lajkó , E. Carlon , H. Rieger , and F. Iglói , Disorderinduced phases in the S=1 antiferromagnetic Heisenberg chain, Phys. Rev. B 72, 094205 (2005)

[34]

Z. L. Tsai , P. Chen , and Y. C. Lin , Tensor network renormalization group study of spin-1 random Heisenberg chains, Eur. Phys. J. B 93 (4), 63 (2020)

[35]

A. M. Goldsborough and R. Römer , Self-assembling tensor networks and holography in disordered spin chains, Phys. Rev. B 89 (21), 214203 (2014)

[36]

S. Bergkvist , P. Henelius , and A. Rosengren , Ground state of the random-bond spin-1 Heisenberg chain, Phys. Rev. B 66 (13), 134407 (2002)

[37]

T. Arakawa , S. Todo , and H. Takayama , Randomnessdriven quantum phase transition in bond-alternating Haldane chain, J. Phys. Soc. Jpn. 74 (4), 1127 (2005)

[38]

E. S. Sϕrensen and I. Affleck , Equal-time correlations in Haldane-gap antiferromagnets, Phys. Rev. B 49 (22), 15771 (1994)

[39]

F. Iglói and C. Monthus , Strong disorder RG approach of random systems, Phys. Rep. 412 (5-6), 277 (2005)

[40]

F. Iglói , R. Juhász , and P. Lajkó , Griffths–McCoy singularities in random quantum spin chains: Exact results through renormalization, Phys. Rev. Lett. 86 (7), 1343 (2001)

[41]

Y. R. Shu , M. Dupont , D. X. Yao , S. Capponi , and A. W. Sandvik , Dynamical properties of the S = 1/2 random Heisenberg chain, Phys. Rev. B 97 (10), 104424 (2018)

[42]

E. Yusuf and K. Yang , Dynamics of weakly coupled random antiferromagnetic quantum spin chains, Phys. Rev. B 72 (2), 020403 (2005)

[43]

T. Masuda , A. Zheludev , K. Uchinokura , J. H. Chung , and S. Park , Dynamics and scaling in a quantum spin chain material with bond randomness, Phys. Rev. Lett. 93 (7), 077206 (2004)

[44]

A. W. Sandvik , Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135 (2010)

[45]

A. W. Sandvik , Classical percolation transition in the diluted two-dimensional S = 1/2 Heisenberg antiferromagnet, Phys. Rev. B 66 (2), 024418 (2002)

[46]

P. Henelius , A. W. Sandvik , C. Timm , and S. M. Girvin , Monte Carlo study of a two-dimensional quantum ferromagnet, Phys. Rev. B 61 (1), 364 (2000)

[47]

O. F. Syljuåsen and A. W. Sandvik , Quantum Monte Carlo with directed loops, Phys. Rev. E 66 (4), 046701 (2002)

[48]

A. W. Sandvik , Stochastic series expansion method with operator-loop update, Phys. Rev. B 59 (22), R14157 (1999)

[49]

A. Dorneich and M. Troyer , Accessing the dynamics of large many-particle systems using the stochastic series expansion, Phys. Rev. E 64 (6), 066701 (2001)

[50]

M. Hohenadler , Z. Y. Meng , T. C. Lang , S. Wessel , A. Muramatsu , and F. F. Assaad , Quantum phase transitions in the Kane–Mele–Hubbard model, Phys. Rev. B 85 (11), 115132 (2012)

[51]

M. Takahashi , Spin-correlation function of the S=1 antiferromagnetic Heisenberg chain at T=0, Phys. Rev. B 38 (7), 5188 (1988)

[52]

A. W. Sandvik , Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57 (17), 10287 (1998)

[53]

A. W. Sandvik , Constrained sampling method for analytic continuation, Phys. Rev. E 94 (6), 063308 (2016)

[54]

A. W. Sandvik and R. R. P. Singh , High-energy magnon dispersion and multimagnon continuum in the twodimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86 (3), 528 (2001)

[55]

H. Shao , Y. Q. Qin , S. Capponi , S. Chesi , Z. Y. Meng , and A. W. Sandvik , Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7 (4), 041072 (2017)

[56]

S. Grossjohann and W. Brenig , Spin dynamics of the antiferromagnetic spin-1/2 chain at finite magnetic fields and intermediate temperatures, Phys. Rev. B 79 (9), 094409 (2009)

[57]

S. Ma , C. Broholm , D. H. Reich , B. J. Sternlieb , and R. W. Erwin , Dominance of long-lived excitations in the antiferromagnetic spin-1 chain NENP, Phys. Rev. Lett. 69 (24), 3571 (1992)

[58]

I. A. Zaliznyak , S. H. Lee , and S. V. Petrov , Continuum in the spin-excitation spectrum of a Haldane chain observed by neutron scattering in CsNiCl3, Phys. Rev. Lett. 87 (1), 017202 (2001)

[59]

M. Kenzelmann , R. A. Cowley , W. J. L. Buyers , R. Coldea , J. S. Gardner , M. Enderle , D. F. McMorrow , and S. M. Bennington , Multiparticle states in the S = 1 chain system CsNiCl3, Phys. Rev. Lett. 87 (1), 017201 (2001)

[60]

S. R. White and I. Affleck , Spectral function for the S = 1 Heisenberg antiferromagetic chain, Phys. Rev. B 77 (13), 134437 (2008)

[61]

J. Becker , T. Köhler , A. C. Tiegel , S. R. Manmana , S. Wessel , and A. Honecker , Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains, Phys. Rev. B 96 (6), 060403 (2017)

[62]

J. H. Huang , G. M. Zhang , and D. X. Yao , Dynamical spin excitations of the topological Haldane gapped phase in the S = 1 Heisenberg antiferromagnetic chain with single-ion anisotropy, Phys. Rev. B 103 (2), 024403 (2021)

[63]

G. Refael , S. Kehrein , and D. S. Fisher , Spin reduction transition in spin-3/2 random Heisenberg chains, Phys. Rev. B 66 (6), 060402 (2002)

[64]

K. Damle and D. A. Huse , Permutation-symmetric multicritical points in random antiferromagnetic spin chains, Phys. Rev. Lett. 89 (27), 277203 (2002)

[65]

E. Carlon , P. Lajkó , H. Rieger , and F. Iglói , Disorderinduced phases in higher-spin antiferromagnetic Heisenberg chains, Phys. Rev. B 69 (14), 144416 (2004)

[66]

F. Iglói and C. Monthus , Strong disorder RG approach of random systems, Phys. Rep. 412 (5-6), 277 (2005)

[67]

A. Saguia , B. Boechat , and M. A. Continentino , Spin-3/2 random quantum antiferromagnetic chains, Phys. Rev. B 68 (2), 020403 (2003)

[68]

A. Saguia , B. Boechat , M. A. Continentino , and O. F. de Alcantara Bonfim , Breakdown of the perturbative renormalization group for S > 1 random antiferromagnetic spin chains, Phys. Rev. B 63 (5), 052414 (2001)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (993KB)

1635

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/