Optimal gamma-ray selections for monochromatic line searches with DAMPE

Zun-Lei Xu, Kai-Kai Duan, Wei Jiang, Shi-Jun Lei, Xiang Li, Zhao-Qiang Shen, Tao Ma, Meng Su, Qiang Yuan, Chuan Yue, Yi-Zhong Fan, Jin Chang

PDF(1063 KB)
PDF(1063 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 34501. DOI: 10.1007/s11467-021-1121-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimal gamma-ray selections for monochromatic line searches with DAMPE

Author information +
History +

Abstract

The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e+e- pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.

Graphical abstract

Keywords

DArk Matter Particle Explorer (DAMPE) / gamma-ray / line-search

Cite this article

Download citation ▾
Zun-Lei Xu, Kai-Kai Duan, Wei Jiang, Shi-Jun Lei, Xiang Li, Zhao-Qiang Shen, Tao Ma, Meng Su, Qiang Yuan, Chuan Yue, Yi-Zhong Fan, Jin Chang. Optimal gamma-ray selections for monochromatic line searches with DAMPE. Front. Phys., 2022, 17(3): 34501 https://doi.org/10.1007/s11467-021-1121-6

References

[1]
J. Chang , DArk Matter Particle Explorer: The first Chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. 34, 550 (2014)
CrossRef ADS Google scholar
[2]
J. Chang , et al. (DAMPE Collaborabtion), The DArk Matter Particle Explorer mission, Astropart. Phys. 95, 6 (2017)
CrossRef ADS Google scholar
[3]
Y. Yu , et al. The plastic scintillator detector for DAMPE, Astropart. Phys. 94, 1 (2017) arXiv: 1703.00098 [astroph.IM]
CrossRef ADS Google scholar
[4]
Z. Zhang , et al. , Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE, Nucl. Instrum. Meth. A 780, 21 (2015)
CrossRef ADS Google scholar
[5]
Z. Zhang , et al. , The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector, Nucl. Instrum. Meth. A 836, 98 (2016)
CrossRef ADS Google scholar
[6]
Y. Y. Huang , T. Ma , C. Yue , Y. Zhang , J. Chang , T. K. Dong , and Y. Q. Zhang , Calibration and performance of the neutron detector onboard of the DAMPE mission, Res. Astron. Astrophys. 20, 153 (2020), arXiv preprint arXiv:1606.01540
CrossRef ADS Google scholar
[7]
G. Ambrosi , et al. (DAMPE Collaborabtion), Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552, 63 (2017), arXiv: 1711.10981 [astro-ph.HE]
CrossRef ADS Google scholar
[8]
Q. An , et al. (DAMPE Collaborabtion), Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860 [astro-ph.HE]
CrossRef ADS Google scholar
[9]
F. Alemanno , et al. (DAMPE Collaborabtion), Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission, Phys. Rev. Lett. 126, 201102 (2021), arXiv: 2105.09073 [astroph.HE]
CrossRef ADS Google scholar
[10]
C. Yue , et al. Implications on the origin of cosmic rays in light of 10 TV spectral softenings, Front. Phys. (Beijing) 15, 24601 (2020), arXiv: 1909.12857 [astro-ph.HE]
CrossRef ADS Google scholar
[11]
Q. Yuan , B. Q. Qiao , Y. Q. Guo , Y. Z. Fan , and X. J. Bi , Nearby source interpretation of differences among light and medium composition spectra in cosmic rays, Front. Phys. (Beijing) 16, 24501 (2021), arXiv: 2007.01768 [astroph.HE]
CrossRef ADS Google scholar
[12]
Q. Yuan and L. Feng , Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications, Sci. China Phys. Mech. Astron. 61, 101002 (2018), arXiv: 1807.11638 [astroph.HE]
CrossRef ADS Google scholar
[13]
E. Charles , M. Sánchez-Conde , B. Anderson , R. Caputo , et al., Sensitivity projections for dark matter searches with the Fermi large area telescope, Phys. Rep. 636, 1 (2016), arXiv: 1605.02016
CrossRef ADS Google scholar
[14]
X. Huang , Q. Yuan , P. F. Yin and X. Chen , Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gammarays, Milky Way halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys. 11, 048 (2012), arXiv: 1208.0267
CrossRef ADS Google scholar
[15]
B. Anderson , S. Zimmer , J. Conrad , M. Gustafsson , M. Sánchez-Conde , and R. Caputo Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT, J. Cosmol. Astropart. Phys. 02, (2), 026, arXiv: 1511.00014
CrossRef ADS Google scholar
[16]
Y. F. Liang , Z. Q. Xia , K. K. Duan , Z. Q. Shen , X. Li , and Y. Z. Fan , Limits on dark matter annihilation cross sections to gamma-ray lines with subhalo distributions in N-body simulations and Fermi LAT data, Phys. Rev. D 95, 063531 (2017), arXiv: 1703.07078
CrossRef ADS Google scholar
[17]
S. Li , Z. Q. Xia , Y. F. Liang , K. K. Duan , et al., Search for line-like signals in the all-sky Fermi-LAT data, Phys. Rev. D 99, 123519 (2019)
CrossRef ADS Google scholar
[18]
M. N. Mazziotta , F. Loparco , D. Serini , A. Cuoco , et al., Search for dark matter signatures in the gamma-ray emission towards the Sun with the Fermi Large Area Telescope, Phys. Rev. D 102, 022003 (2020), arXiv: 2006.04114
CrossRef ADS Google scholar
[19]
Y. F. Liang , Z. Q. Shen , X. Li , Y. Z. Fan , et al., Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data, Phys. Rev. D 93, 103525 (2016), arXiv: 1602.06527
CrossRef ADS Google scholar
[20]
Z. Q. Shen , Z. Q. Xia , and Y. Z. Fan , Search for linelike and box-shaped spectral features from nearby galaxy clusters with 11.4 years of Fermi-LAT data, Astrophys. J. 920, 1 (2021), arXiv: 2108.00363 [astro-ph.HE]
CrossRef ADS Google scholar
[21]
G. Ambrosi , et al. (DAMPE Collaborabtion), The on-orbit calibration of DArk Matter Particle Explorer, Astropart. Phys. 106, 18 (2019), arXiv: 1907.02173 [astro-ph.IM]
CrossRef ADS Google scholar
[22]
Z. L. Xu , et al. An algorithm to resolve γ-rays from charged cosmic rays with DAMPE, Res. Astron. Astrophys. 18, (3), 027 (2018), arXiv: 1712.02939 [physics.ins-det]
CrossRef ADS Google scholar
[23]
K. K. Duan , et al. DmpIRFs and DmpST: DAMPE instrument response functions and science tools for gammaray data analysis, Res. Astron. Astrophys. 19, 132 (2019), arXiv: 1904.13098 [astro-ph.HE]
CrossRef ADS Google scholar
[24]
Y. L. Zhang , et al., Evaluation of particle acceptance for space particle telescope, Chin. Phys. C 35, 774 (2011)
CrossRef ADS Google scholar
[25]
M. Ackermann , M. Ajello , A. Albert , A. Allafort , L. Baldini , et al., (Fermi-LAT Collaboration), Search for gammaray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev. D 88, 082002 (2013), arXiv: 1305.5597
CrossRef ADS Google scholar
[26]
A. Albert , G. A. Gómez-Vargas , M. Grefe , C. Muñoz , et al., Search for 100 MeV to 10 GeV γ-ray lines in the FermiLAT data and implications for gravitino dark matter in the µvSSM, J. Cosmol. Astropart. Phys. 10, (10), 023 (2014), arXiv: 1406.3430 [astro-ph.HE]
CrossRef ADS Google scholar
[27]
Y. -Q. Zhang , et al., Design and on-orbit status of the trigger system for the DAMPE mission, Res. Astron Astrophys. 19 (9), 123 (2019)
CrossRef ADS Google scholar
[28]
J. Einasto , On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)
[29]
J. F. Navarro , A. Ludlow , V. Springel , J. Wang , et al., The diversity and similarity of simulated cold dark matter haloes, Mon. Not. R. Astron. Soc. 402, 21 (2010), arXiv: 0810.1522
CrossRef ADS Google scholar
[30]
F. Acero , M. Ackermann , M. Ajello , A. Albert , et al. (Fermi-LAT Collaboration), Development of the model of galactic interstellar emission for standard point-source analysis of Fermi large area telescope data, Astrophys. J. Suppl. Ser. 223, 26 (2016), arXiv: 1602.07246 [astroph.HE]
CrossRef ADS Google scholar
[31]
S. Abdollahi , F. Acero , M. Ackermann , M. Ajello , W. B. Atwood , et al. (Fermi-LAT Collaboration), Fermi Large Area Telescope fourth source catalog, Astrophys. J. Suppl. Ser. 247, 33 (2020), arXiv: 1902.10045 [astro-ph.HE]
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1063 KB)

Accesses

Citations

Detail

Sections
Recommended

/