The entanglement of several graph states

Xiao-Yu Chen (陈小余)

Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 444 -448.

PDF (171KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 444 -448. DOI: 10.1007/s11467-012-0249-9
RESEARCH ARTICLE

The entanglement of several graph states

Author information +
History +
PDF (171KB)

Abstract

We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non “two-colorable” graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9275, less than the upper bound determined by local operations and classical communication. An upper bound of entanglement is proposed based on the definition of graph state.

Keywords

graph state / closest separable state / multipartite entanglement

Cite this article

Download citation ▾
Xiao-Yu Chen (陈小余). The entanglement of several graph states. Front. Phys., 2012, 7(4): 444-448 DOI:10.1007/s11467-012-0249-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 1997, 78(12): 2275

[2]

V. Vedral and M. B. Plenio, Phys. Rev. A, 1998, 57(3): 1619

[3]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 1996, 54(5): 3824

[4]

W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A, 2000, 62(6): 062314

[5]

A. Miyake, Phys. Rev. A, 2003, 67(1): 012108

[6]

G. Vidal and R. Tarrach, Phys. Rev. A, 1999, 59(1): 141

[7]

T. C. Wei and P. M. Goldbart, Phys. Rev. A, 2003, 68(4): 042307

[8]

T. C. Wei, M. Ericsson, P. M. Goldbart, and W. J. Munro, Quant. Inform. Comp., 2004, 4: 252

[9]

M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. Lett., 2006, 96(4): 040501

[10]

T. C. Wei, Phys. Rev. A, 2008, 78(1): 012327

[11]

M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. A, 2008, 77(1): 012104

[12]

D. Markham, A.Miyake, and S. Virmani, New J. Phys., 2007, 9(6): 194

[13]

M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel, in: G. Casati, D. L. Shepelyansky, P. Zoller, and G. Benenti(Eds.), Quantum Computers, Algorithms and Chaos, 162, Amsterdam: IOS Press, 2006

[14]

O. Gühne, B. Jungnitsch, T. Moroder, and Y. S. Weinstein, Phys. Rev. A, 2011, 84(5): 052319

[15]

B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. A, 2011, 84(3): 03231

[16]

X. Y. Chen and L. Z. Jiang, Phys. Rev. A, 2011, 83(5): 052316

[17]

M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A, 2004, 69(6): 062311

[18]

D. Schlingemann and R. F. Werner, Phys. Rev. A, 2002, 65(1): 012308

[19]

R. Raussendorf and H. J. Briegel, Phys. Rev. Lett., 2001, 86(22): 5188

[20]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature, 2005, 434(7030): 169

[21]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Nat. Phys., 2007, 3(2): 91

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (171KB)

911

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/