Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films

Cheng-Liang Lu(陆成亮) , Jun-Ming Liu(刘俊明) , Tao Wu(吴韬)

Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 424 -428.

PDF (420KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 424 -428. DOI: 10.1007/s11467-011-0241-9
RESEARCH ARTICLE

Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films

Author information +
History +
PDF (420KB)

Abstract

Highly compressively strained BiFeO3 thin films with different thickness are epitaxially grown on (001) LaAlO3 substrates and characterized using various techniques. The quasi-tetragonal phase with a giant axial ratio of ~1.25 and its thickness-dependent evolution are investigated. An interesting twining structure of the quasi-tetragonal phase is evidenced in thicker films through detailed reciprocal space mapping, which becomes more pronounced with increasing film thickness. Moreover, an interesting electric-field driven phase transition was evidenced in the film with a thickness of 38 nm, in which the quasi-tetragonal and rhombohedral phases are close to each other in energy landscape.

Keywords

ferroelectricity / antiferromagnetic / phase transition

Cite this article

Download citation ▾
Cheng-Liang Lu(陆成亮), Jun-Ming Liu(刘俊明), Tao Wu(吴韬). Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films. Front. Phys., 2012, 7(4): 424-428 DOI:10.1007/s11467-011-0241-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 2003, 299(5613): 1719

[2]

T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater., 2006, 5(10): 823

[3]

K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58: 321

[4]

C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Q. He, P.Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Nat. Mater., 2009, 8(6): 485

[5]

G. Catalan and J. F. Scott, Adv. Mater., 2009, 21(24): 1

[6]

S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, L.W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol., 2010, 5(2): 143

[7]

S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett., 2008, 92(20): 202904

[8]

D. Kan, L. Palova, V. Anhusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, and I. Takeuchi, Adv. Funct. Mater., 2010, 20(7): 1108

[9]

C. J. Cheng, D. Kan, S. H. Lim, W. R. Mckenzie, P. R. Munroe, L. G. Salamanca-Riba, R. L. Withers, I. Takeuchi, and V. Nagarajan, Phys. Rev. B, 2009, 80(1): 014109

[10]

F. Kubel and H. Schmid, Acta Crystallogr. B, 1990, 46(6): 698

[11]

N. A. Hill, J. Phys. Chem. B, 2000, 104(29): 6694

[12]

C. Ederer and N. A. Spaldin, Phys. Rev. Lett., 2005, 95(25): 257601

[13]

H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett., 2009, 102(21): 217603

[14]

R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science, 2009, 326(5955): 977

[15]

C. J. Cheng, C. L. Lu, Z. H. Chen, L. You, L. Chen, J. Wang, and T. Wu, Appl. Phys. Lett., 2011, 98(24): 242502

[16]

J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett., 2011, 107(14): 147602

[17]

A. R. Damodaran, C. W. Liang, Q. He, C. Y. Peng, L. Chang, Y. H. Chu, and L. W. Martin, Adv. Mater., 2011, 23(28): 3170

[18]

Z. H. Chen, S. Prosandeev, Z. L. Luo, W. Ren, Y. J. Qi, C. W. Huang, L. You, C. Gao, I. A. Kornev, T. Wu, J. Wang, P. Yang, T. Sritharan, L. Bellaiche, and L. Chen, Phys. Rev. B, 2011, 84(9): 094116

[19]

A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B, 2010, 81(5): 054109

[20]

B. Dupé, I. C. Infante, G. Geneste, P. E. Janolin, M. Bibes, A. Barthélémy, S. Lisenkov, L. Bellaiche, S. Ravy, and B. Dkhil, Phys. Rev. B, 2010, 81(14): 144128

[21]

Z. H. Chen, Z. L. Luo, C.W. Huang, Y. J. Qi, P. Yang, L. You, C. S. Hu, T. Wu, J. L. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Funct. Mater., 2011, 21(1): 133

[22]

C. L. Lu, Y. Wang, L. You, X. Zhou, H. Y. Peng, G. Z. Xing, E. E. M. Chia, C. Panagopoulos, L. Chen, J. M. Liu, J. Wang, and T. Wu, Appl. Phys. Lett., 2010, 97(25): 252905

[23]

S. H. Xie, A. Gannepalli, Q. N. Chen, Y. M. Liu, Y. C. Zhou, R. Proksch, and J. Y. Li, Nanoscale,

[24]

C. J. M. Daumont, S. Farokhipoor, A. Ferri, J. C. Wojdel, J. Íñiguez, B. J. Kooi, and B. Noheda, Phys. Rev. B, 2010, 81(14): 144115

[25]

D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, Nano Lett., 2010, 10(7): 2555

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (420KB)

1160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/