Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3

Na Zhang , Shuai Dong , Jun-Ming Liu

Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 408 -417.

PDF (743KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 408 -417. DOI: 10.1007/s11467-011-0225-9
REVIEW ARTICLE

Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3

Author information +
History +
PDF (743KB)

Abstract

While the ferroelectricity in type-II multiferroic rare-earth manganites is believed to be generated by the inverse Dzyaloshinskii–Moriya (DM) interaction (spin–orbit coupling) associated with the Mn spiral spin order, recent results revealed the strong spin–lattice coupling arising from the Dy–Mn spin interaction in DyMnO3, which may also be an ingredient contributing to the ferroelectricity. In this work, we summarize our recent experiments on this issue by performing a series of rare-earth site nonmagnetic Y and magnetic Ho substitutions at Dy site for DyMnO3. It is demonstrated that the Dy–Mn spin interaction contributes to the ferroelectric polarization through the symmetric exchange striction mechanism (spin–lattice coupling). A coexistence of the spin–orbit coupling and spin–lattice coupling in one compound is confirmed. At the same time, the independent Dy antiferromagnetic spin order at low temperature can be effectively suppressed by the substitutions, beneficial to the polarization enhancement.

Keywords

multiferroics / spin–orbit coupling / spin–lattice coupling / coexistence

Cite this article

Download citation ▾
Na Zhang, Shuai Dong, Jun-Ming Liu. Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3. Front. Phys., 2012, 7(4): 408-417 DOI:10.1007/s11467-011-0225-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Fiebig, J. Phys. D, 2005, 38(8): R123

[2]

W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442(7104): 759

[3]

S. W. Cheong and M. Mostovoy, Nat. Mater., 2007, 6(1): 13

[4]

K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58(4): 321

[5]

M. Bibes and A. Barthélémy, Nat. Mater., 2008, 7(6): 425

[6]

M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Nat. Mater., 2007, 6(4): 296

[7]

W. Prellier, M. P. Sing, and P. Murugavel, J. Phys.: Condens. Matter, 2005, 17(30): R803

[8]

N. A. Hill, J. Phys. Chem. B, 2000, 104(29): 6694

[9]

H. Schmid, Magnetoelectric Effects in Insulationg Magnetic Materials, in: Introduction to Complex Mediums for Optics and Electromagnetics, edited by W. S. Weiglhoger and A. Lakhtakia, Bellingham, WA: SPIE Press, 2003: 167

[10]

T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B, 2005, 71(22): 224425

[11]

T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 2003, 426(6962): 55

[12]

T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett., 2004, 92(25): 257201

[13]

M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett., 2005, 95(8): 087206

[14]

J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B, 2007, 75(3): 035118

[15]

J. A. Moreira, A. Almeida, W. S. Ferreira, J. P. Araújo, A. M. Pereira, M. R. Chaves, M. M. R. Costa, V. A. Khomchenko, J. Kreisel, D. Chernyshov, S. M. F. Vilela, and P. B. Tavares, Phys. Rev. B, 2010, 82(9): 094418

[16]

S. Ishiwata, Y. Kaneko, Y. Tokunaga, Y. Taguchi, T. Arima, and Y. Tokura, Phys. Rev. B, 2010, 81(10): 100411(R)

[17]

J. Strempfer, B. Bohnenbuck, M. Mostovoy, N. Aliouane, D. N. Argyriou, F. Schrettle, J. Hemberger, A. Krimmel, and M. V. Zimmermann, Phys. Rev. B, 2007, 75(21): 212402

[18]

N. Aliouane, O. Prokhnenko, R. Feyerherm, M. Mostovoy, J. Strempfer, K. Habicht, K. Rule, E. Dudzik, A. U. B. Wolter, A. Maljuk, and D. N. Argyriou, J. Phys.: Condens. Matter, 2008, 20(43): 434215

[19]

O. Prokhnenko, R. Feyerherm, E. Dudzik, S. Landsgesell, N. Aliouane, L. C. Chapon, and D. N. Argyriou, Phys. Rev. Lett., 2007, 98(5): 057206

[20]

R. Feyerherm, E. Dudzik, A. U. B. Wolter, S. Valencia, O. Prokhnenko, A. Maljuk, S. Landsgesell, N. Aliouane, L. Bouchenoire, S. Brown, and D. N. Argyriou, Phys. Rev. B, 2009, 79(13): 134426

[21]

E. Schierle, V. Soltwisch, D. Schmitz, R. Feyerherm, A. Maljuk, F. Yokaichiya, D. N. Argyriou, and E. Weschke, Phys. Rev. Lett., 2010, 105(16): 167207

[22]

R. Feyerherm, E. Dudzik, N. Aliouane, and D. N. Argyriou, Phys. Rev. B, 2006, 73(18): 180401(R)

[23]

N. Zhang, K. F. Wang, S. J. Luo, T. Wei, X. W. Dong, S. Z. Li, J. G. Wan, and J. M. Liu, Appl. Phys. Lett., 2010, 96(25): 252902

[24]

O. Prokhnenko, N. Aliouane, R. Feyerherm, E. Dudzik, A. U. B. Wolter, A. Maljuk, K. Kiefer, and D. N. Argyriou, Phys. Rev. B, 2010, 81(2): 024419

[25]

R. Feyerherm, E. Dudzik, O. Prokhnenko, and D. N. Argyriou, J. Phys.: Conf. Ser., 2010, 200(1): 012032

[26]

Y. Yamasaki, H. Sagayama, T. Goto, M. Matsuura, K. Hirota, T. Arima, and Y. Tokura, Phys. Rev. Lett., 2007, 8(14): 147204

[27]

T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B, 2003, 68(6): 060403(R)

[28]

H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett., 2005, 95(5): 057205

[29]

M. Mostovoy, Phys. Rev. Lett., 2006, 96(6): 067601

[30]

I. A. Sergienko and E. Dagotto, Phys. Rev. B, 2006, 73(9): 094434

[31]

S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Phys. Rev. B, 2008, 78(15): 155121

[32]

I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett., 2006, 97(22): 227204

[33]

S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett., 2007, 99(22): 227201

[34]

B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B, 2007, 76(10): 104405

[35]

C. Y. Ren, Phys. Rev. B, 2009, 79(12): 125113

[36]

Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, Phys. Rev. Lett., 2008, 100(4): 047601

[37]

V. Kiryukhin, S. S. Lee, Q. Ratcliff, H. T. Huang, Y. J. Yi, Y. Choi, and S. W. Cheong, Phys. Rev. Lett., 2009, 102(18): 187202

[38]

Y. J. Jo, S. S. Lee, E. S. Choi, H. T. Yi, Y. J. Ratcliff, V. Choi, S.W. Kiryukhin, S. Cheong, and L. Balicas, Phys. Rev. B, 2009, 79(1): 012407

[39]

R. Flint, H. T. Yi, P. Chandra, S. W. Cheong, and V. Kiryukhin, Phys. Rev. B, 2010, 81(9): 092402

[40]

Y. J. Guo, S. Dong, K. F. Wang, and J. M. Liu, Phys. Rev. B, 2009, 79(24): 245107

[41]

H. Wu, T. Burnus, Z. Hu, C. Martin, A. Maignan, J. C. Cezar, A. Tanaka, N. B. Brookes, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett., 2009, 102(2): 026404

[42]

X. Y. Yao, V. C. Lo, and J. M. Liu, J. Appl. Phys., 2009, 105(3): 033907

[43]

X. Y. Yao, V. C. Lo, and J. M. Liu, J. Appl. Phys., 2009, 106(1): 013903

[44]

Y. Zhang, H. J. Xiang, and M. H. Whangbo, Phys. Rev. B, 2009, 79(5): 054432

[45]

L. Li, W. Z. Luo, Y. J. Guo, S. Z. Li, S. J. Luo, K. F. Wang, and J. M. Liu, Appl. Phys. Lett., 2010, 96(2): 022516

[46]

P. Ding, L. Li, Y. J. Guo, Q. Y. He, X. S. Gao, and J. M. Liu, Appl. Phys. Lett., 2010, 97(3): 032901

[47]

B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B, 2004, 70(21): 212412

[48]

J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, Phys. Rev. B, 2006, 74(1): 014422

[49]

H. W. Brinks, H. Fjellvåg, and A. Kjekshus, J. Solid State Chem., 1997, 129(2): 334

[50]

N. Zhang, S. Dong, G. Q. Zhang, L. Lin, Y. Y. Guo, J. M. Liu, and Z. F. Ren, Appl. Phys. Lett., 2011, 98(1): 012510

[51]

N. Zhang, Y. Y. Guo, L. Lin, S. Dong, Z. B. Yan, X. G. Li, and J. M. Liu, Appl. Phys. Lett., 2011, 99(10): 102509

[52]

A. Munoz, M. T. Casais, J. A. Alonso, M. J. Martinez-Lope, J. L. Martinez, and M. T. Fernandez-Diaz, Inorg. Chem., 2001, 40(5): 1020

[53]

G. Q. Zhang, S. J. Luo, S. Dong, Y. J. Gao, and J. M. Liu, J. Appl. Phys., 2011, 109: 07D901

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (743KB)

918

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/