Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3

Na Zhang, Shuai Dong, Jun-Ming Liu

PDF(743 KB)
PDF(743 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 408-417. DOI: 10.1007/s11467-011-0225-9
REVIEW ARTICLE
REVIEW ARTICLE

Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3

Author information +
History +

Abstract

While the ferroelectricity in type-II multiferroic rare-earth manganites is believed to be generated by the inverse Dzyaloshinskii–Moriya (DM) interaction (spin–orbit coupling) associated with the Mn spiral spin order, recent results revealed the strong spin–lattice coupling arising from the Dy–Mn spin interaction in DyMnO3, which may also be an ingredient contributing to the ferroelectricity. In this work, we summarize our recent experiments on this issue by performing a series of rare-earth site nonmagnetic Y and magnetic Ho substitutions at Dy site for DyMnO3. It is demonstrated that the Dy–Mn spin interaction contributes to the ferroelectric polarization through the symmetric exchange striction mechanism (spin–lattice coupling). A coexistence of the spin–orbit coupling and spin–lattice coupling in one compound is confirmed. At the same time, the independent Dy antiferromagnetic spin order at low temperature can be effectively suppressed by the substitutions, beneficial to the polarization enhancement.

Keywords

multiferroics / spin–orbit coupling / spin–lattice coupling / coexistence

Cite this article

Download citation ▾
Na Zhang, Shuai Dong, Jun-Ming Liu. Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3. Front. Phys., 2012, 7(4): 408‒417 https://doi.org/10.1007/s11467-011-0225-9

References

[1]
M. Fiebig, J. Phys. D, 2005, 38(8): R123
CrossRef ADS Google scholar
[2]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442(7104): 759
CrossRef ADS Google scholar
[3]
S. W. Cheong and M. Mostovoy, Nat. Mater., 2007, 6(1): 13
CrossRef ADS Google scholar
[4]
K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58(4): 321
CrossRef ADS Google scholar
[5]
M. Bibes and A. Barthélémy, Nat. Mater., 2008, 7(6): 425
CrossRef ADS Google scholar
[6]
M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Nat. Mater., 2007, 6(4): 296
CrossRef ADS Google scholar
[7]
W. Prellier, M. P. Sing, and P. Murugavel, J. Phys.: Condens. Matter, 2005, 17(30): R803
CrossRef ADS Google scholar
[8]
N. A. Hill, J. Phys. Chem. B, 2000, 104(29): 6694
CrossRef ADS Google scholar
[9]
H. Schmid, Magnetoelectric Effects in Insulationg Magnetic Materials, in: Introduction to Complex Mediums for Optics and Electromagnetics, edited by W. S. Weiglhoger and A. Lakhtakia, Bellingham, WA: SPIE Press, 2003: 167
CrossRef ADS Google scholar
[10]
T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B, 2005, 71(22): 224425
CrossRef ADS Google scholar
[11]
T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 2003, 426(6962): 55
CrossRef ADS Google scholar
[12]
T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett., 2004, 92(25): 257201
CrossRef ADS Google scholar
[13]
M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett., 2005, 95(8): 087206
CrossRef ADS Google scholar
[14]
J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B, 2007, 75(3): 035118
CrossRef ADS Google scholar
[15]
J. A. Moreira, A. Almeida, W. S. Ferreira, J. P. Araújo, A. M. Pereira, M. R. Chaves, M. M. R. Costa, V. A. Khomchenko, J. Kreisel, D. Chernyshov, S. M. F. Vilela, and P. B. Tavares, Phys. Rev. B, 2010, 82(9): 094418
CrossRef ADS Google scholar
[16]
S. Ishiwata, Y. Kaneko, Y. Tokunaga, Y. Taguchi, T. Arima, and Y. Tokura, Phys. Rev. B, 2010, 81(10): 100411(R)
CrossRef ADS Google scholar
[17]
J. Strempfer, B. Bohnenbuck, M. Mostovoy, N. Aliouane, D. N. Argyriou, F. Schrettle, J. Hemberger, A. Krimmel, and M. V. Zimmermann, Phys. Rev. B, 2007, 75(21): 212402
CrossRef ADS Google scholar
[18]
N. Aliouane, O. Prokhnenko, R. Feyerherm, M. Mostovoy, J. Strempfer, K. Habicht, K. Rule, E. Dudzik, A. U. B. Wolter, A. Maljuk, and D. N. Argyriou, J. Phys.: Condens. Matter, 2008, 20(43): 434215
CrossRef ADS Google scholar
[19]
O. Prokhnenko, R. Feyerherm, E. Dudzik, S. Landsgesell, N. Aliouane, L. C. Chapon, and D. N. Argyriou, Phys. Rev. Lett., 2007, 98(5): 057206
CrossRef ADS Google scholar
[20]
R. Feyerherm, E. Dudzik, A. U. B. Wolter, S. Valencia, O. Prokhnenko, A. Maljuk, S. Landsgesell, N. Aliouane, L. Bouchenoire, S. Brown, and D. N. Argyriou, Phys. Rev. B, 2009, 79(13): 134426
CrossRef ADS Google scholar
[21]
E. Schierle, V. Soltwisch, D. Schmitz, R. Feyerherm, A. Maljuk, F. Yokaichiya, D. N. Argyriou, and E. Weschke, Phys. Rev. Lett., 2010, 105(16): 167207
CrossRef ADS Google scholar
[22]
R. Feyerherm, E. Dudzik, N. Aliouane, and D. N. Argyriou, Phys. Rev. B, 2006, 73(18): 180401(R)
CrossRef ADS Google scholar
[23]
N. Zhang, K. F. Wang, S. J. Luo, T. Wei, X. W. Dong, S. Z. Li, J. G. Wan, and J. M. Liu, Appl. Phys. Lett., 2010, 96(25): 252902
CrossRef ADS Google scholar
[24]
O. Prokhnenko, N. Aliouane, R. Feyerherm, E. Dudzik, A. U. B. Wolter, A. Maljuk, K. Kiefer, and D. N. Argyriou, Phys. Rev. B, 2010, 81(2): 024419
CrossRef ADS Google scholar
[25]
R. Feyerherm, E. Dudzik, O. Prokhnenko, and D. N. Argyriou, J. Phys.: Conf. Ser., 2010, 200(1): 012032
CrossRef ADS Google scholar
[26]
Y. Yamasaki, H. Sagayama, T. Goto, M. Matsuura, K. Hirota, T. Arima, and Y. Tokura, Phys. Rev. Lett., 2007, 8(14): 147204
CrossRef ADS Google scholar
[27]
T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B, 2003, 68(6): 060403(R)
CrossRef ADS Google scholar
[28]
H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett., 2005, 95(5): 057205
CrossRef ADS Google scholar
[29]
M. Mostovoy, Phys. Rev. Lett., 2006, 96(6): 067601
CrossRef ADS Google scholar
[30]
I. A. Sergienko and E. Dagotto, Phys. Rev. B, 2006, 73(9): 094434
CrossRef ADS Google scholar
[31]
S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Phys. Rev. B, 2008, 78(15): 155121
CrossRef ADS Google scholar
[32]
I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett., 2006, 97(22): 227204
CrossRef ADS Google scholar
[33]
S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett., 2007, 99(22): 227201
CrossRef ADS Google scholar
[34]
B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B, 2007, 76(10): 104405
CrossRef ADS Google scholar
[35]
C. Y. Ren, Phys. Rev. B, 2009, 79(12): 125113
CrossRef ADS Google scholar
[36]
Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, Phys. Rev. Lett., 2008, 100(4): 047601
CrossRef ADS Google scholar
[37]
V. Kiryukhin, S. S. Lee, Q. Ratcliff, H. T. Huang, Y. J. Yi, Y. Choi, and S. W. Cheong, Phys. Rev. Lett., 2009, 102(18): 187202
CrossRef ADS Google scholar
[38]
Y. J. Jo, S. S. Lee, E. S. Choi, H. T. Yi, Y. J. Ratcliff, V. Choi, S.W. Kiryukhin, S. Cheong, and L. Balicas, Phys. Rev. B, 2009, 79(1): 012407
CrossRef ADS Google scholar
[39]
R. Flint, H. T. Yi, P. Chandra, S. W. Cheong, and V. Kiryukhin, Phys. Rev. B, 2010, 81(9): 092402
CrossRef ADS Google scholar
[40]
Y. J. Guo, S. Dong, K. F. Wang, and J. M. Liu, Phys. Rev. B, 2009, 79(24): 245107
CrossRef ADS Google scholar
[41]
H. Wu, T. Burnus, Z. Hu, C. Martin, A. Maignan, J. C. Cezar, A. Tanaka, N. B. Brookes, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett., 2009, 102(2): 026404
CrossRef ADS Google scholar
[42]
X. Y. Yao, V. C. Lo, and J. M. Liu, J. Appl. Phys., 2009, 105(3): 033907
CrossRef ADS Google scholar
[43]
X. Y. Yao, V. C. Lo, and J. M. Liu, J. Appl. Phys., 2009, 106(1): 013903
CrossRef ADS Google scholar
[44]
Y. Zhang, H. J. Xiang, and M. H. Whangbo, Phys. Rev. B, 2009, 79(5): 054432
CrossRef ADS Google scholar
[45]
L. Li, W. Z. Luo, Y. J. Guo, S. Z. Li, S. J. Luo, K. F. Wang, and J. M. Liu, Appl. Phys. Lett., 2010, 96(2): 022516
CrossRef ADS Google scholar
[46]
P. Ding, L. Li, Y. J. Guo, Q. Y. He, X. S. Gao, and J. M. Liu, Appl. Phys. Lett., 2010, 97(3): 032901
CrossRef ADS Google scholar
[47]
B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B, 2004, 70(21): 212412
CrossRef ADS Google scholar
[48]
J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, Phys. Rev. B, 2006, 74(1): 014422
CrossRef ADS Google scholar
[49]
H. W. Brinks, H. Fjellvåg, and A. Kjekshus, J. Solid State Chem., 1997, 129(2): 334
CrossRef ADS Google scholar
[50]
N. Zhang, S. Dong, G. Q. Zhang, L. Lin, Y. Y. Guo, J. M. Liu, and Z. F. Ren, Appl. Phys. Lett., 2011, 98(1): 012510
CrossRef ADS Google scholar
[51]
N. Zhang, Y. Y. Guo, L. Lin, S. Dong, Z. B. Yan, X. G. Li, and J. M. Liu, Appl. Phys. Lett., 2011, 99(10): 102509
CrossRef ADS Google scholar
[52]
A. Munoz, M. T. Casais, J. A. Alonso, M. J. Martinez-Lope, J. L. Martinez, and M. T. Fernandez-Diaz, Inorg. Chem., 2001, 40(5): 1020
CrossRef ADS Google scholar
[53]
G. Q. Zhang, S. J. Luo, S. Dong, Y. J. Gao, and J. M. Liu, J. Appl. Phys., 2011, 109: 07D901

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(743 KB)

Accesses

Citations

Detail

Sections
Recommended

/