Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers

Shu-Hong Xie (谢淑红), Yun-Ya Liu(刘运牙), Jiang-Yu Li(李江宇)

PDF(761 KB)
PDF(761 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 399-407. DOI: 10.1007/s11467-011-0210-3
REVIEW ARTICLE
REVIEW ARTICLE

Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers

Author information +
History +

Abstract

Multiferroic materials with two or more types of ferroic orders have attracted a great deal of attention in the last decade for their magnetoelectric coupling, and new ideas and concepts have been explored recently to develop multiferroic materials at nano-scale. Motivated by theoretical analysis, we synthesized single-phase BiFeO3 (BFO) nanofibers, Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) and Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO) composite nanofibers, and CoFe2O4-Pb(Zr0.52Ti0.48)O3 (CFO-PZT) core-shell nanofibers using sol-gel based electrospinning. These nanofibers typically have diameters in the range of a few hundred nanometers and grain size in the range of 10s nanometers, and exhibits both ferroelectric and ferromagnetic properties. Piezoresponse force microscopy (PFM) based techniques have also been developed to examine the magnetoelectric coupling of the nanofibers, which is estimated to be two orders of magnitude higher than that of thin films, consistent with our theoretical analysis. These nanofibers are promising for a variety of multiferroic applications.

Keywords

multiferroic / nanofiber / magnetoelectric / piezoresponse force microscopy

Cite this article

Download citation ▾
Shu-Hong Xie (谢淑红), Yun-Ya Liu(刘运牙), Jiang-Yu Li(李江宇). Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers. Front. Phys., 2012, 7(4): 399‒407 https://doi.org/10.1007/s11467-011-0210-3

References

[1]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442(7104): 759
CrossRef ADS Google scholar
[2]
N. A. Spaldin and M. Fiebig, Science, 2005, 309(5733): 391
CrossRef ADS Google scholar
[3]
H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science, 2004, 303(5658): 661
CrossRef ADS Google scholar
[4]
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature, 2004, 429(6990): 392
CrossRef ADS Google scholar
[5]
M. Liu, O. Obi, J. Lou, Y. J. Chen, Z. H. Cai, S. Stoute, M. Espanol, M. Lew, X. D. Situ, K. S. Ziemer, V. G. Harris, and N. X. Sun, Adv. Funct. Mater., 2009, 19(11): 1826
CrossRef ADS Google scholar
[6]
Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett., 2006, 88(14): 143503
CrossRef ADS Google scholar
[7]
J. F. Scott, Nat. Mater., 2007, 6(4): 256
CrossRef ADS Google scholar
[8]
J. Y. Zhai, J. F. Li, S. X. Dong, D. Viehland, and M. I. Bichurin, J. Appl. Phys., 2006, 100(12): 124509
CrossRef ADS Google scholar
[9]
P. Yang, S. Peng, X. F. Wang, X. M. Lu, F. Yan, and J. S. Zhu, Appl. Phys. Lett., 2009, 94(8): 082904
CrossRef ADS Google scholar
[10]
R. Ramesh and N. A. Spaldin, Nat. Mater., 2007, 6(1): 21
CrossRef ADS Google scholar
[11]
J. Ma, Z. Shi, and C. W. Nan, Adv. Mater., 2007, 19(18): 2571
CrossRef ADS Google scholar
[12]
G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B, 2001, 64(21): 214408
CrossRef ADS Google scholar
[13]
T. K. Chung, G. P. Carman, and K. P. Mohanchandra, Appl. Phys. Lett., 2008, 92(11): 112509
CrossRef ADS Google scholar
[14]
J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Appl. Phys. Lett., 2005, 86(12): 122501
CrossRef ADS Google scholar
[15]
S. Q. Ren, R. M. Briber, and M. Wuttig, Appl. Phys. Lett., 2009, 94(11): 113507
CrossRef ADS Google scholar
[16]
S. X. Dong, J. Y. Zhai, F. M. Bai, J. F. Li, D. Viehland, and T. A. Lograsso, J. Appl. Phys., 2005, 97(10): 103902
CrossRef ADS Google scholar
[17]
M. Liu, X. Li, J. Lou, S. Zheng, K. Du, and N. X. Sun, J. Appl. Phys., 2007, 102(8): 083911
CrossRef ADS Google scholar
[18]
J. M. Ding, C. G. Zhong, and Q. Jiang, Front. Phys., 2007, 2(3): 312
CrossRef ADS Google scholar
[19]
C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 2008, 103(3): 031101
CrossRef ADS Google scholar
[20]
D. P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai, and G. Sharma, Nanoscale, 2010, 2(7): 1149
CrossRef ADS Google scholar
[21]
H. C. He, J. Wang, J. P. Zhou, and C. W. Nan, Adv. Funct. Mater., 2007, 17(8): 1333
CrossRef ADS Google scholar
[22]
K. Raidongia, A. Nag, A. Sundaresan, and C. N. R. Rao, Appl. Phys. Lett., 2010, 97(6): 062904
CrossRef ADS Google scholar
[23]
P. Murugavel, M. P. Singh, W. Prellier, B. Mercey, Ch. Simon, and B. Raveau, J. Appl. Phys., 2005, 97(10): 103914
CrossRef ADS Google scholar
[24]
M. P. Singh, W. Prellier, C. Simon, and B. Raveau, Appl. Phys. Lett., 2005, 87(2): 022505
CrossRef ADS Google scholar
[25]
R. Ranjith, B. Kundys, and W. Prellier, Appl. Phys. Lett., 2007, 91(22): 222904
CrossRef ADS Google scholar
[26]
M. Liu, J. Lou, S. D. Li, and N. X. Sun, Adv. Funct. Mater., 2011, 21(13): 2593
CrossRef ADS Google scholar
[27]
N. Wang, J. Cheng, A. Pyatakov, A. K. Zvezdin, J. F. Li, L. E. Cross, and D. Viehland, Phys. Rev. B, 2005, 72(10): 104434
CrossRef ADS Google scholar
[28]
W. M. Zhu, H. Y. Guo, and Z. G. Ye, Phys. Rev. B, 2008, 78(1): 014401
CrossRef ADS Google scholar
[29]
J. R. Cheng, S. W. Yu, J. G. Chen, Z. Y. Meng, and L. E. Cross, Appl. Phys. Lett., 2006, 89(12): 122911
CrossRef ADS Google scholar
[30]
C. L. Zhang, W. Q. Chen, S. H. Xie, J. S. Yang, and J. Y. Li, Appl. Phys. Lett., 2009, 94(10): 102907
CrossRef ADS Google scholar
[31]
S. H. Xie, J. Y. Li, Y. Qiao, Y. Y. Liu, L. N. Lan, Y. C. Zhou, and S. T. Tan, Appl. Phys. Lett., 2008, 92(6): 062901
CrossRef ADS Google scholar
[32]
S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, and Y. C. Zhou, J. Appl. Phys., 2008, 104(2): 024115
CrossRef ADS Google scholar
[33]
S. H. Xie, J. Y. Li, R. Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan, and Y. Qiao, Appl. Phys. Lett., 2008, 93(22): 222904
CrossRef ADS Google scholar
[34]
S. H. Xie, F. Y. Ma, Y. M. Liu, and J. Y. Li, Nanoscale, 2011,
CrossRef ADS Google scholar
[35]
C. J. Murphy and N. R. Jana, Adv. Mater. (Deerfield Beach Fla.), 2002, 14(1): 80
[36]
P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, J. Am. Chem. Soc., 2001, 123(19): 4502
CrossRef ADS Google scholar
[37]
F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. Liu, and Z. F. Ren, Appl. Phys. Lett., 2006, 89: 2345825
[38]
B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, Chem. Mater., 2002, 14(2): 480
CrossRef ADS Google scholar
[39]
N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, J. Phys. Chem. C, 2008, 112(23): 8634
CrossRef ADS Google scholar
[40]
C. Chen, J. R. Cheng, S. W. Yu, L. J. Che, and Z. Y.Meng, J. Crys. Grow., 2006, 291(1): 135
CrossRef ADS Google scholar
[41]
Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett., 2004, 85(26): 6389
CrossRef ADS Google scholar
[42]
M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Angew. Chem., 2007, 119(5): 764
CrossRef ADS Google scholar
[43]
X. Zhu, Z. Liu, and N. Ming, J. Mater. Chem., 2010, 20(20): 4015
CrossRef ADS Google scholar
[44]
M. Liu, X. Li, H. Imrane, Y. J. Chen, T. Goodrich, Z. H. Cai, K. S. Ziemer, J. Y. Huang, and N. X. Sun, Appl. Phys. Lett., 2007, 90(15): 152501
CrossRef ADS Google scholar
[45]
D. Li, Y. Wang, and Y. N. Xia, Nano Lett., 2003, 3(8): 1167
CrossRef ADS Google scholar
[46]
X. H. Li, C. L. Shao, and Y. C. Liu, Langmuir, 2007, 23(22): 10920
CrossRef ADS Google scholar
[47]
Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 2003, 63(15): 2223
CrossRef ADS Google scholar
[48]
S. A. Theron, E. Zussmana, and A. L. Yarin, Polymer, 2004, 45(6): 2017
CrossRef ADS Google scholar
[49]
R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys., 2007, 102(11): 111101
CrossRef ADS Google scholar
[50]
X. L. Xu, X. L. Zhuang, X. S. Chen, X. R. Wang, L. X. Yang, and X. B. Jing, Macromol. Rapid Commun., 2006, 27(19): 1637
CrossRef ADS Google scholar
[51]
J. T. McCann, D. Li, and Y. N. Xia, J. Mater. Chem., 2005, 15(7): 735
CrossRef ADS Google scholar
[52]
J. Doshi and D. H. Reneker, J. Electrost., 1995, 35(2-3): 151
CrossRef ADS Google scholar
[53]
T. A. Kowalewski, S. Blonski, and S. Barral, Bull. Pol. Acad. Sci. Tech. Sci., 2005, 53: 385
[54]
S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 2006, 9(3): 40
CrossRef ADS Google scholar
[55]
W. E. Teo and S. Ramakrishna, Nanotechnology, 2006, 17(14): R89
CrossRef ADS Google scholar
[56]
J. Lyons, C. Li, and F. Ko, Polymer, 2004, 45(22): 7597
CrossRef ADS Google scholar
[57]
D. Li and Y. N. Xia, Nano Lett., 2004, 4(5): 933
CrossRef ADS Google scholar
[58]
J. T. McCann, M. Marquez, and Y. N. Xia, Nano Lett., 2006, 6(12): 2868
CrossRef ADS Google scholar
[59]
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 2003, 299(5613): 1719
CrossRef ADS Google scholar
[60]
T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett., 2007, 7(3): 766
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(761 KB)

Accesses

Citations

Detail

Sections
Recommended

/