Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers
Shu-Hong Xie (谢淑红), Yun-Ya Liu(刘运牙), Jiang-Yu Li(李江宇)
Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers
Multiferroic materials with two or more types of ferroic orders have attracted a great deal of attention in the last decade for their magnetoelectric coupling, and new ideas and concepts have been explored recently to develop multiferroic materials at nano-scale. Motivated by theoretical analysis, we synthesized single-phase BiFeO3 (BFO) nanofibers, Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) and Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO) composite nanofibers, and CoFe2O4-Pb(Zr0.52Ti0.48)O3 (CFO-PZT) core-shell nanofibers using sol-gel based electrospinning. These nanofibers typically have diameters in the range of a few hundred nanometers and grain size in the range of 10s nanometers, and exhibits both ferroelectric and ferromagnetic properties. Piezoresponse force microscopy (PFM) based techniques have also been developed to examine the magnetoelectric coupling of the nanofibers, which is estimated to be two orders of magnitude higher than that of thin films, consistent with our theoretical analysis. These nanofibers are promising for a variety of multiferroic applications.
multiferroic / nanofiber / magnetoelectric / piezoresponse force microscopy
[1] |
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442(7104): 759
CrossRef
ADS
Google scholar
|
[2] |
N. A. Spaldin and M. Fiebig, Science, 2005, 309(5733): 391
CrossRef
ADS
Google scholar
|
[3] |
H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science, 2004, 303(5658): 661
CrossRef
ADS
Google scholar
|
[4] |
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature, 2004, 429(6990): 392
CrossRef
ADS
Google scholar
|
[5] |
M. Liu, O. Obi, J. Lou, Y. J. Chen, Z. H. Cai, S. Stoute, M. Espanol, M. Lew, X. D. Situ, K. S. Ziemer, V. G. Harris, and N. X. Sun, Adv. Funct. Mater., 2009, 19(11): 1826
CrossRef
ADS
Google scholar
|
[6] |
Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett., 2006, 88(14): 143503
CrossRef
ADS
Google scholar
|
[7] |
J. F. Scott, Nat. Mater., 2007, 6(4): 256
CrossRef
ADS
Google scholar
|
[8] |
J. Y. Zhai, J. F. Li, S. X. Dong, D. Viehland, and M. I. Bichurin, J. Appl. Phys., 2006, 100(12): 124509
CrossRef
ADS
Google scholar
|
[9] |
P. Yang, S. Peng, X. F. Wang, X. M. Lu, F. Yan, and J. S. Zhu, Appl. Phys. Lett., 2009, 94(8): 082904
CrossRef
ADS
Google scholar
|
[10] |
R. Ramesh and N. A. Spaldin, Nat. Mater., 2007, 6(1): 21
CrossRef
ADS
Google scholar
|
[11] |
J. Ma, Z. Shi, and C. W. Nan, Adv. Mater., 2007, 19(18): 2571
CrossRef
ADS
Google scholar
|
[12] |
G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B, 2001, 64(21): 214408
CrossRef
ADS
Google scholar
|
[13] |
T. K. Chung, G. P. Carman, and K. P. Mohanchandra, Appl. Phys. Lett., 2008, 92(11): 112509
CrossRef
ADS
Google scholar
|
[14] |
J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Appl. Phys. Lett., 2005, 86(12): 122501
CrossRef
ADS
Google scholar
|
[15] |
S. Q. Ren, R. M. Briber, and M. Wuttig, Appl. Phys. Lett., 2009, 94(11): 113507
CrossRef
ADS
Google scholar
|
[16] |
S. X. Dong, J. Y. Zhai, F. M. Bai, J. F. Li, D. Viehland, and T. A. Lograsso, J. Appl. Phys., 2005, 97(10): 103902
CrossRef
ADS
Google scholar
|
[17] |
M. Liu, X. Li, J. Lou, S. Zheng, K. Du, and N. X. Sun, J. Appl. Phys., 2007, 102(8): 083911
CrossRef
ADS
Google scholar
|
[18] |
J. M. Ding, C. G. Zhong, and Q. Jiang, Front. Phys., 2007, 2(3): 312
CrossRef
ADS
Google scholar
|
[19] |
C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 2008, 103(3): 031101
CrossRef
ADS
Google scholar
|
[20] |
D. P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai, and G. Sharma, Nanoscale, 2010, 2(7): 1149
CrossRef
ADS
Google scholar
|
[21] |
H. C. He, J. Wang, J. P. Zhou, and C. W. Nan, Adv. Funct. Mater., 2007, 17(8): 1333
CrossRef
ADS
Google scholar
|
[22] |
K. Raidongia, A. Nag, A. Sundaresan, and C. N. R. Rao, Appl. Phys. Lett., 2010, 97(6): 062904
CrossRef
ADS
Google scholar
|
[23] |
P. Murugavel, M. P. Singh, W. Prellier, B. Mercey, Ch. Simon, and B. Raveau, J. Appl. Phys., 2005, 97(10): 103914
CrossRef
ADS
Google scholar
|
[24] |
M. P. Singh, W. Prellier, C. Simon, and B. Raveau, Appl. Phys. Lett., 2005, 87(2): 022505
CrossRef
ADS
Google scholar
|
[25] |
R. Ranjith, B. Kundys, and W. Prellier, Appl. Phys. Lett., 2007, 91(22): 222904
CrossRef
ADS
Google scholar
|
[26] |
M. Liu, J. Lou, S. D. Li, and N. X. Sun, Adv. Funct. Mater., 2011, 21(13): 2593
CrossRef
ADS
Google scholar
|
[27] |
N. Wang, J. Cheng, A. Pyatakov, A. K. Zvezdin, J. F. Li, L. E. Cross, and D. Viehland, Phys. Rev. B, 2005, 72(10): 104434
CrossRef
ADS
Google scholar
|
[28] |
W. M. Zhu, H. Y. Guo, and Z. G. Ye, Phys. Rev. B, 2008, 78(1): 014401
CrossRef
ADS
Google scholar
|
[29] |
J. R. Cheng, S. W. Yu, J. G. Chen, Z. Y. Meng, and L. E. Cross, Appl. Phys. Lett., 2006, 89(12): 122911
CrossRef
ADS
Google scholar
|
[30] |
C. L. Zhang, W. Q. Chen, S. H. Xie, J. S. Yang, and J. Y. Li, Appl. Phys. Lett., 2009, 94(10): 102907
CrossRef
ADS
Google scholar
|
[31] |
S. H. Xie, J. Y. Li, Y. Qiao, Y. Y. Liu, L. N. Lan, Y. C. Zhou, and S. T. Tan, Appl. Phys. Lett., 2008, 92(6): 062901
CrossRef
ADS
Google scholar
|
[32] |
S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, and Y. C. Zhou, J. Appl. Phys., 2008, 104(2): 024115
CrossRef
ADS
Google scholar
|
[33] |
S. H. Xie, J. Y. Li, R. Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan, and Y. Qiao, Appl. Phys. Lett., 2008, 93(22): 222904
CrossRef
ADS
Google scholar
|
[34] |
S. H. Xie, F. Y. Ma, Y. M. Liu, and J. Y. Li, Nanoscale, 2011,
CrossRef
ADS
Google scholar
|
[35] |
C. J. Murphy and N. R. Jana, Adv. Mater. (Deerfield Beach Fla.), 2002, 14(1): 80
|
[36] |
P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, J. Am. Chem. Soc., 2001, 123(19): 4502
CrossRef
ADS
Google scholar
|
[37] |
F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. Liu, and Z. F. Ren, Appl. Phys. Lett., 2006, 89: 2345825
|
[38] |
B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, Chem. Mater., 2002, 14(2): 480
CrossRef
ADS
Google scholar
|
[39] |
N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, J. Phys. Chem. C, 2008, 112(23): 8634
CrossRef
ADS
Google scholar
|
[40] |
C. Chen, J. R. Cheng, S. W. Yu, L. J. Che, and Z. Y.Meng, J. Crys. Grow., 2006, 291(1): 135
CrossRef
ADS
Google scholar
|
[41] |
Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett., 2004, 85(26): 6389
CrossRef
ADS
Google scholar
|
[42] |
M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Angew. Chem., 2007, 119(5): 764
CrossRef
ADS
Google scholar
|
[43] |
X. Zhu, Z. Liu, and N. Ming, J. Mater. Chem., 2010, 20(20): 4015
CrossRef
ADS
Google scholar
|
[44] |
M. Liu, X. Li, H. Imrane, Y. J. Chen, T. Goodrich, Z. H. Cai, K. S. Ziemer, J. Y. Huang, and N. X. Sun, Appl. Phys. Lett., 2007, 90(15): 152501
CrossRef
ADS
Google scholar
|
[45] |
D. Li, Y. Wang, and Y. N. Xia, Nano Lett., 2003, 3(8): 1167
CrossRef
ADS
Google scholar
|
[46] |
X. H. Li, C. L. Shao, and Y. C. Liu, Langmuir, 2007, 23(22): 10920
CrossRef
ADS
Google scholar
|
[47] |
Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 2003, 63(15): 2223
CrossRef
ADS
Google scholar
|
[48] |
S. A. Theron, E. Zussmana, and A. L. Yarin, Polymer, 2004, 45(6): 2017
CrossRef
ADS
Google scholar
|
[49] |
R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys., 2007, 102(11): 111101
CrossRef
ADS
Google scholar
|
[50] |
X. L. Xu, X. L. Zhuang, X. S. Chen, X. R. Wang, L. X. Yang, and X. B. Jing, Macromol. Rapid Commun., 2006, 27(19): 1637
CrossRef
ADS
Google scholar
|
[51] |
J. T. McCann, D. Li, and Y. N. Xia, J. Mater. Chem., 2005, 15(7): 735
CrossRef
ADS
Google scholar
|
[52] |
J. Doshi and D. H. Reneker, J. Electrost., 1995, 35(2-3): 151
CrossRef
ADS
Google scholar
|
[53] |
T. A. Kowalewski, S. Blonski, and S. Barral, Bull. Pol. Acad. Sci. Tech. Sci., 2005, 53: 385
|
[54] |
S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 2006, 9(3): 40
CrossRef
ADS
Google scholar
|
[55] |
W. E. Teo and S. Ramakrishna, Nanotechnology, 2006, 17(14): R89
CrossRef
ADS
Google scholar
|
[56] |
J. Lyons, C. Li, and F. Ko, Polymer, 2004, 45(22): 7597
CrossRef
ADS
Google scholar
|
[57] |
D. Li and Y. N. Xia, Nano Lett., 2004, 4(5): 933
CrossRef
ADS
Google scholar
|
[58] |
J. T. McCann, M. Marquez, and Y. N. Xia, Nano Lett., 2006, 6(12): 2868
CrossRef
ADS
Google scholar
|
[59] |
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 2003, 299(5613): 1719
CrossRef
ADS
Google scholar
|
[60] |
T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett., 2007, 7(3): 766
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |