Electronic structure of YMn2O5 studied by EELS and first-principles calculations

Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li

PDF(339 KB)
PDF(339 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 429-434. DOI: 10.1007/s11467-011-0201-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic structure of YMn2O5 studied by EELS and first-principles calculations

Author information +
History +

Abstract

The electronic structure of multiferroic YMn2O5 material has been studied by use of the generalized gradient approximation (GGA). The results demonstrate that the oxygen 2p and manganese 3d orbitals are strongly hybridized. Considering the on-site Coulomb interaction U, we performed the GGA+U calculations for 0<U≤8 eV, and it is found that the increase of U could enlarge the band gap and, on the other hand, weaken the Mn–O hybridization. The experimental measurements of the electron energy-loss spectrometry (EELS) exhibit a rich variety of structural features in both O–K edge and Mn–L edges. A theoretical and experimental analysis on the O–K edge suggests that the on-site Coulomb interaction (U) in YMn2O5 could be less than 4 eV. Certain electronic structural features of LaMn2O5 have been discussed in comparison with those of YMn2O5.

Keywords

YMn2O5 / multiferroics / electron energy-loss spectra / electronic structure / GGA+U

Cite this article

Download citation ▾
Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations. Front. Phys., 2012, 7(4): 429‒434 https://doi.org/10.1007/s11467-011-0201-4

References

[1]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442: 759
CrossRef ADS Google scholar
[2]
G. Catalan and J. F. Scott, Adv. Mater. (Deerfield Beach Fla.), 2009, 21: 2463
[3]
N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature, 2004, 429: 392
CrossRef ADS Google scholar
[4]
N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Phys. Rev. Lett., 2004, 93: 107207
CrossRef ADS Google scholar
[5]
C. R. dela Cruz, F. Yen, B. Lorenz, M. Gospodinov, C. Chu, W. Ratcliff, J. Lynn, S. Park, and S. W. Cheong, Phys. Rev. B, 2006, 73: 100406
CrossRef ADS Google scholar
[6]
P. G. Radaelli, L. C. Chapon, A. Daoud-Aladine, C. Vecchini, P. J. Brown, T. Chatterji, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2008, 101: 067205
CrossRef ADS Google scholar
[7]
A. Munoz, J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez, and M. T. Fernandez-Diaz, Eur. J. Inorg.Chem., 2005, 2005: 685
[8]
C. Vecchini, L. Chapon, P. Brown, T. Chatterji, S. Park, S. W. Cheong, and P. Radaelli, Phys. Rev. B, 2008, 77: 134434
CrossRef ADS Google scholar
[9]
C. Wang, G. C. Guo, and L. He, Phys. Rev. Lett., 2007, 99: 177202
CrossRef ADS Google scholar
[10]
C. Wang, G. C. Guo, and L. He, Phys. Rev. B, 2008, 77: 134113
CrossRef ADS Google scholar
[11]
L. C. Chapon, P. G. Radaelli, G. R. Blake, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2006, 96: 097601
CrossRef ADS Google scholar
[12]
R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, New York and London: Plenum Press, 1996
[13]
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, Z. Szotek, W. M. Temmerman, and A. P. Sutton, Phys. Status Solidi (a), 1998, 166(1): 429
CrossRef ADS Google scholar
[14]
R. Xiao, H. Yang, L. Xu, H. Zhang, Y. Shi, and J. Li, Solid State Commun., 2005, 135(11-12): 687
CrossRef ADS Google scholar
[15]
G. Radtke, A. Saúl, H. Dabkowska, B. Gaulin, and G. Botton, Phys. Rev. B, 2008, 77: 125130
CrossRef ADS Google scholar
[16]
C. Delacalle, J. Alonso, M. Martinezlope, M. Garciahernandez, and G. Andre, Mater. Res. Bull., 2008, 43(2): 197
CrossRef ADS Google scholar
[17]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Karlheinz Schwarz, Techn. University Wien, Austria, 2001
[18]
Z. Wu and R. E. Cohen, Phys. Rev. B, 2006, 73: 235116
CrossRef ADS Google scholar
[19]
V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B, 1993, 48: 16929
CrossRef ADS Google scholar
[20]
M. Nelhiebel, P. H. Louf, P. Schattschneider, P. Blaha, K. Schwarz, and B. Jouffrey, Phys. Rev. B, 1999, 59: 12807
CrossRef ADS Google scholar
[21]
J. Titantah, K. Jorissen, and D. Lamoen, Phys. Rev. B, 2004, 69: 125406
CrossRef ADS Google scholar
[22]
A. Moskvin and R. Pisarev, Phys. Rev. B, 2008, 77: 060102
CrossRef ADS Google scholar
[23]
B. Rafferty and L. M. Brown, Phys. Rev. B, 1998, 58: 10326
CrossRef ADS Google scholar
[24]
B. Rafferty, S. J. Pennycook, and L. M. Brown, J. Electron Microsc. (Tokyo), 2000, 49(4): 517
CrossRef ADS Google scholar
[25]
M. Stöger-Pollach, Micron, 2008, 39(8): 1092
CrossRef ADS Google scholar
[26]
J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys., 2005, 123: 174101
CrossRef ADS Google scholar
[27]
P. G. Radaelli, C. Vecchini, L. C. Chapon, P. J. Brown, S. Park, and S. W. Cheong, Phys. Rev. B, 2009, 79: 020404
CrossRef ADS Google scholar
[28]
J. Koo, C. Song, S. Ji, J. S. Lee, J. Park, T. H. Jang, C. H. Yang, J. H. Park, Y. H. Jeong, K. B. Lee, T. Y. Koo, Y. J. Park, J. Y. Kim, D. Wermeille, A. I. Goldman, G. Srajer, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2007, 99: 197601
CrossRef ADS Google scholar
[29]
A. D. Becke and E. R. Johnson, J. Chem. Phys., 2006, 124: 221101
CrossRef ADS Google scholar
[30]
F. Tran and P. Blaha, Phys. Rev. Lett., 2009, 102: 226401
CrossRef ADS Google scholar
[31]
D. J. Singh, Phys. Rev. B, 2010, 82: 205102
CrossRef ADS Google scholar
[32]
P. Rez and D. A.Muller, Annu. Rev. Mater. Res., 2008, 38(1): 535
CrossRef ADS Google scholar
[33]
J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett., 2000, 85: 1298
CrossRef ADS Google scholar
[34]
F. M. F. De Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B, 1989, 40: 5715
CrossRef ADS Google scholar
[35]
N. Mannella, A. Rosenhahn, M. Watanabe, B. Sell, A. Nambu, S. Ritchey, E. Arenholz, A. Young, Y. Tomioka, and C. S. Fadley, Phys. Rev. B, 2005, 71: 125117
CrossRef ADS Google scholar
[36]
D. K. Shukla, S. Mollah, R. Kumar, P. Thakur, K. H. Chae, W. K. Choi, and A. Banerjee, J. Appl. Phys., 2008, 104: 033707
CrossRef ADS Google scholar
[37]
G. Giovannetti and J. van den Brink, Phys. Rev. Lett., 2008, 100: 227603
CrossRef ADS Google scholar
[38]
F. Groot, Coord. Chem. Rev., 2005, 249(1-2): 31
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/