Electronic structure of YMn2O5 studied by EELS and first-principles calculations

Zhen Chen , Rui-Juan Xiao , Chao Ma , Yuan-Bin Qin , Hong-Long Shi , Zhi-Wei Wang , Yuan-Jun Song , Zhen Wang , Huan-Fang Tian , Huai-Xin Yang , Jian-Qi Li

Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 429 -434.

PDF (339KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 429 -434. DOI: 10.1007/s11467-011-0201-4
RESEARCH ARTICLE

Electronic structure of YMn2O5 studied by EELS and first-principles calculations

Author information +
History +
PDF (339KB)

Abstract

The electronic structure of multiferroic YMn2O5 material has been studied by use of the generalized gradient approximation (GGA). The results demonstrate that the oxygen 2p and manganese 3d orbitals are strongly hybridized. Considering the on-site Coulomb interaction U, we performed the GGA+U calculations for 0<U≤8 eV, and it is found that the increase of U could enlarge the band gap and, on the other hand, weaken the Mn–O hybridization. The experimental measurements of the electron energy-loss spectrometry (EELS) exhibit a rich variety of structural features in both O–K edge and Mn–L edges. A theoretical and experimental analysis on the O–K edge suggests that the on-site Coulomb interaction (U) in YMn2O5 could be less than 4 eV. Certain electronic structural features of LaMn2O5 have been discussed in comparison with those of YMn2O5.

Keywords

YMn2O5 / multiferroics / electron energy-loss spectra / electronic structure / GGA+U

Cite this article

Download citation ▾
Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations. Front. Phys., 2012, 7(4): 429-434 DOI:10.1007/s11467-011-0201-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442: 759

[2]

G. Catalan and J. F. Scott, Adv. Mater. (Deerfield Beach Fla.), 2009, 21: 2463

[3]

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature, 2004, 429: 392

[4]

N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Phys. Rev. Lett., 2004, 93: 107207

[5]

C. R. dela Cruz, F. Yen, B. Lorenz, M. Gospodinov, C. Chu, W. Ratcliff, J. Lynn, S. Park, and S. W. Cheong, Phys. Rev. B, 2006, 73: 100406

[6]

P. G. Radaelli, L. C. Chapon, A. Daoud-Aladine, C. Vecchini, P. J. Brown, T. Chatterji, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2008, 101: 067205

[7]

A. Munoz, J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez, and M. T. Fernandez-Diaz, Eur. J. Inorg.Chem., 2005, 2005: 685

[8]

C. Vecchini, L. Chapon, P. Brown, T. Chatterji, S. Park, S. W. Cheong, and P. Radaelli, Phys. Rev. B, 2008, 77: 134434

[9]

C. Wang, G. C. Guo, and L. He, Phys. Rev. Lett., 2007, 99: 177202

[10]

C. Wang, G. C. Guo, and L. He, Phys. Rev. B, 2008, 77: 134113

[11]

L. C. Chapon, P. G. Radaelli, G. R. Blake, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2006, 96: 097601

[12]

R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, New York and London: Plenum Press, 1996

[13]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, Z. Szotek, W. M. Temmerman, and A. P. Sutton, Phys. Status Solidi (a), 1998, 166(1): 429

[14]

R. Xiao, H. Yang, L. Xu, H. Zhang, Y. Shi, and J. Li, Solid State Commun., 2005, 135(11-12): 687

[15]

G. Radtke, A. Saúl, H. Dabkowska, B. Gaulin, and G. Botton, Phys. Rev. B, 2008, 77: 125130

[16]

C. Delacalle, J. Alonso, M. Martinezlope, M. Garciahernandez, and G. Andre, Mater. Res. Bull., 2008, 43(2): 197

[17]

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Karlheinz Schwarz, Techn. University Wien, Austria, 2001

[18]

Z. Wu and R. E. Cohen, Phys. Rev. B, 2006, 73: 235116

[19]

V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B, 1993, 48: 16929

[20]

M. Nelhiebel, P. H. Louf, P. Schattschneider, P. Blaha, K. Schwarz, and B. Jouffrey, Phys. Rev. B, 1999, 59: 12807

[21]

J. Titantah, K. Jorissen, and D. Lamoen, Phys. Rev. B, 2004, 69: 125406

[22]

A. Moskvin and R. Pisarev, Phys. Rev. B, 2008, 77: 060102

[23]

B. Rafferty and L. M. Brown, Phys. Rev. B, 1998, 58: 10326

[24]

B. Rafferty, S. J. Pennycook, and L. M. Brown, J. Electron Microsc. (Tokyo), 2000, 49(4): 517

[25]

M. Stöger-Pollach, Micron, 2008, 39(8): 1092

[26]

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys., 2005, 123: 174101

[27]

P. G. Radaelli, C. Vecchini, L. C. Chapon, P. J. Brown, S. Park, and S. W. Cheong, Phys. Rev. B, 2009, 79: 020404

[28]

J. Koo, C. Song, S. Ji, J. S. Lee, J. Park, T. H. Jang, C. H. Yang, J. H. Park, Y. H. Jeong, K. B. Lee, T. Y. Koo, Y. J. Park, J. Y. Kim, D. Wermeille, A. I. Goldman, G. Srajer, S. Park, and S. W. Cheong, Phys. Rev. Lett., 2007, 99: 197601

[29]

A. D. Becke and E. R. Johnson, J. Chem. Phys., 2006, 124: 221101

[30]

F. Tran and P. Blaha, Phys. Rev. Lett., 2009, 102: 226401

[31]

D. J. Singh, Phys. Rev. B, 2010, 82: 205102

[32]

P. Rez and D. A.Muller, Annu. Rev. Mater. Res., 2008, 38(1): 535

[33]

J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett., 2000, 85: 1298

[34]

F. M. F. De Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B, 1989, 40: 5715

[35]

N. Mannella, A. Rosenhahn, M. Watanabe, B. Sell, A. Nambu, S. Ritchey, E. Arenholz, A. Young, Y. Tomioka, and C. S. Fadley, Phys. Rev. B, 2005, 71: 125117

[36]

D. K. Shukla, S. Mollah, R. Kumar, P. Thakur, K. H. Chae, W. K. Choi, and A. Banerjee, J. Appl. Phys., 2008, 104: 033707

[37]

G. Giovannetti and J. van den Brink, Phys. Rev. Lett., 2008, 100: 227603

[38]

F. Groot, Coord. Chem. Rev., 2005, 249(1-2): 31

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (339KB)

1151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/