1. Semiconductor IndustryAssociation. . The International Technology Roadmap for Semiconductors(2005 edition). San Jose, California, 2005
2. Arden W . Futuresemiconductor material requirements and innovations as projected inthe ITRS 2005 roadmap. Materials Scienceand Engineering: B, 2006, 134(2–3): 104–108. doi:10.1016/j.mseb.2006.07.004
3. Mozer A P . New developments in silicon Czochralski crystal growth and wafertechnology. Materials Science and Engineering:B, 2000, 73(1–3): 36–41. doi:10.1016/S0921-5107(99)00429-8
4. Yu X, Yang D, Ma X, et al.. Grown-in defects in nitrogen-doped Czochralskisilicon. Journal of Applied Physics, 2002, 92(1): 188–194. doi:10.1063/1.1481190
5. Chen J, Yang D, Li H, et al.. Enhancement effect of germanium on oxygen precipitationin Czochralski silicon. Journal of AppliedPhysics, 2006, 99(7): 073509 (5 pages). doi: 10.1063/1.2188130
6. Tsuya H . Presentstatus and prospect of Si wafers for ultra large scale integration. Japanese Journal of Applied Physics, 2004, 43: 4055–4067. doi:10.1143/JJAP.43.4055
7. Chandrasekhar S, Kim K M . Growth of large diameternecks for large size CZ silicon, semiconductor silicon.In: Huff H R, Tsuya H, Gssele U, eds. Electronics Division PV. Pennington: The Electrochemical Society, 1998, vols. 98–101, 411
8. Yip V F S, Wilcox W R . Dislocation elimination inTHM growth of GaAs. Journal of CrystalGrowth, 1976, 36(1): 29–35. doi:10.1016/0022-0248(76)90210-4
9. Shiraishi Y, Takano K, Matsubara J, et al.. Growth of silicon crystal with a diameter of400 mm and weight of 400 kg. Journal ofCrystal Growth, 2001, 229(1–4): 17–21. doi:10.1016/S0022-0248(01)01042-9
10. Abe T . In: Proceedings of the 6th International Symposium on Ultra Large ScaleIntegration Science and Technology 1997. Pennington: The ElectrochemicalSociety, 1997, vols.97–103, 123
11. Hoshikawa K, Huang X, Taishi T, et al.. Dislocation-free Czochralski silicon crystalgrowth without the dislocation-elimination-necking process. Japanese Journal of Applied Physics, 1999, 38: L1369–L1371. doi:10.1143/JJAP.38.L1369
12. Huang X, Taishi T, Yonenaga I, et al.. Dislocation-free Czochralski Si crystal growthwithout dash necking using a heavily B and Ge codoped Si seed. Japanese Journal of Applied Physics, 2000, 39: L1115–L1117. doi:10.1143/JJAP.39.L1115
13. Watanabe M, Yi K W, Hibiya T, et al.. Direct observation and numerical simulationof molten silicon flow during crystal growth under magnetic fieldsby x-ray radiography and large-scale computation. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1–4): 215–238. doi:10.1016/S0960-8974(99)00013-3
14. Yu H, Sui Y, Zhang F, et al.. Numerical simulation of a Czochralski siliconcrystal growth with a large diameter 300 mm under a cusp magneticfield. Journal of Inorganic Materials, 2005, 20(2): 453–458 (in Chinese)
15. Wang C, Zhang H, Wang T H, et al.. A continuous Czochralski silicon crystal growthsystem. Journal of Crystal Growth, 2003, 250(1–2): 209–214. doi:10.1016/S0022-0248(02)02241-8
16. Watanabe M, Vizman D, Friedrich J, et al.. Large modification of crystal-melt interfaceshape during Si crystal growth by using electromagnetic Czochralskimethod (EMCZ). Journal of Crystal Growth, 2006, 292(2): 252–256. doi:10.1016/j.jcrysgro.2006.04.047
17. Watanabe M, Eguchi M, Wang W, et al.. Controlling oxygen concentration and distributionin 200 mm diameter Si crystals using the electromagnetic Czochralski(EMCZ) method. Journal of Crystal Growth, 2002, 237–239: 1657–1662. doi:10.1016/S0022-0248(01)01824-3
18. Virbulis J, Wetzel Th, Tomzig E, et al.. Silicon melt convection in large size Czochralskicrucibles. Materials Science in SemiconductorProcessing, 2002, 5(4–5): 353–359. doi:10.1016/S1369-8001(02)00123-3
19. Gorbunov L, Pedchenko A, Feodorov A, et al.. Physical modelling of the melt flow during large-diametersilicon single crystal growth. Journalof Crystal Growth, 2003, 257(1–2): 7–18. doi:10.1016/S0022-0248(03)01376-9
20. Akatsuka M, Sueoka K . Pinning effect of punched-outdislocations in carbon-, nitrogen- or boron-doped silicon wafers. Japanese Journal of Applied Physics, 2001, 40: 1240–1241. doi:10.1143/JJAP.40.1240
21. Yang D, Que D, Sumino K . Nitrogen effects on thermal donor and shallow thermaldonor in silicon. Journal of Applied Physics, 1995, 77(2): 943–944. doi:10.1063/1.359024
22. Nakai K, Inoue Y, Yokota H, et al.. Oxygen precipitation in nitrogen-doped Czochralski-grownsilicon crystals. Journal of Applied Physics, 2001, 89(8): 4301–4309. doi:10.1063/1.1356425
23. Shimura F, Hockett R S . Nitrogen effect on oxygenprecipitation in Czochralski silicon. AppliedPhysics Letters, 1986, 48(3): 224–226. doi:10.1063/1.96564
24. Cui C, Yang D, Ma X, et al.. Effect of nitrogen doping on denuded zone formedby rapid thermal process in Czochralski silicon wafer. Physica B: Condensed Matter, 2006, 376–377: 216–219. doi:10.1016/j.physb.2005.12.057
25. Yang D, Chen J, Li H, et al.. Micro-defects in Ge doped Czochralski grownSi crystals. Journal of Crystal Growth, 2006, 292(2): 266–271. doi:10.1016/j.jcrysgro.2006.04.010
26. Li H, Yang D, Ma X, et al.. Germanium effect on oxygen precipitation inCzochralski silicon. Journal of AppliedPhysics, 2004, 96(8): 4161–4165. doi:10.1063/1.1790578
27. Taishi T, Huang X, Yonenaga I, et al.. Dislocation behavior in heavily germanium-dopedsilicon crystal. Materials Science in SemiconductorProcessing, 2002, 5(4–5): 409–412. doi:10.1016/S1369-8001(02)00128-2
28. Chen J, Yang D, Ma X, et al.. Intrinsic gettering Based on rapid thermal annealingin germanium-doped Czochralski silicon. Journal of Applied Physics, 2007, 101(3): 033526 (4 pages). doi: 10.1063/1.2436829
29. Porrini M, Voronkov V V, Falster R . The effect of carbon and antimony on grown-in microdefectsin Czochralski silicon crystals. MaterialsScience and Engineering: B, 2006, 134(2–3): 185–188. doi:10.1016/j.mseb.2006.06.047
30. Nakai K, Kitahara K, Ohta Y, et al.. Crystal defects in epitaxial layer on nitrogen-dopedCzochralski-grown silicon substrate (II) - Suppression of the crystaldefects in epitaxial layer by the control of crystal growth conditionand carbon co-doping. Japanese Journalof Applied Physics, 2004, 43: 1247–1253. doi:10.1143/JJAP.43.1247
31. Imai M, Inoue K, Mayusumi M, et al.. Surface imperfection behavior during the SiH4 epitaxial growth process.Journal of the Electrochemical Society, 2000, 147(4): 1568–1572. doi:10.1149/1.1393395
32. Nakai K, Kitahara K, Ohta Y, et al.. In: Richter H, Kittler M, eds. Solid State Phenomena. Switzerland: Scitec Publications Ltd, 2004, vols. 95–96, 11
33. Mii Y J, Xie Y H, Fitzgerald E A, et al.. Extremely high electron mobility in Si/GexSi1-x structures grown by molecularbeam epitaxy. Applied Physics Letters, 1991, 59(13): 1611–1613. doi:10.1063/1.106246
34. Kim S-J, Shim T-H, Park J-G, et al.. Post-RTA effect on the electrical characteristicsof nano-scale strained Si grown on SiGe-on-insulator n-MOSFET. Journal of the Korean Physical Society, 2007, 50(2): 514–518
35. Tezuka T, Sugiyama N, Mizuno T, et al.. A novel fabrication technique of ultra-thinand relaxed SiGe buffer layers with high Ge content for sub-100 nmstrained silicon-on-insulator MOSFETs. In: Extended Abstracts of the 2000 International Conference on SolidState Devices and Materials, 2000, 472–473
36. Park J-G, Lee G-S, Kim T-H, et al.. Strained Si engineering for nanoscale MOSFETs. Materials Science and Engineering: B, 2006, 134(2–3): 142–153. doi:10.1016/j.mseb.2006.07.014