Monocrystalline silicon used for integrated circuits:
still on the way
CHEN Jia-he, YANG De-ren, QUE Duan-lin
Author information+
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University
Show less
History+
Published
05 Dec 2008
Issue Date
05 Dec 2008
Abstract
With the rapid development of semiconductor technology, highly integrated circuits (ICs) and future nano-scale devices require large diameter and defect-free monocrystalline silicon wafers. The ongoing innovation from silicon materials is one of the driving forces in future micro and nano-technologies. In this work, the recent developments in the controlling of large diameter silicon crystal growth processes, the improvement of material features by co-doping with the intend-introduced impurities, and the progress of defect engineered silicon wafers (epitaxial silicon wafer, strained silicon, silicon on insulator) are reviewed. It is proposed that the silicon manufacturing infrastructure could still meet the increasingly stringent requirements arising from ULSI circuits and will expand Moore’s law into a couple of decades.
CHEN Jia-he, YANG De-ren, QUE Duan-lin.
Monocrystalline silicon used for integrated circuits:
still on the way. Front. Mater. Sci., 2008, 2(4): 335‒344 https://doi.org/10.1007/s11706-008-0062-0
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Semiconductor IndustryAssociation. . The International Technology Roadmap for Semiconductors(2005 edition). San Jose, California, 2005 2. Arden W . Futuresemiconductor material requirements and innovations as projected inthe ITRS 2005 roadmap. Materials Scienceand Engineering: B, 2006, 134(2–3): 104–108. doi:10.1016/j.mseb.2006.07.004 3. Mozer A P . New developments in silicon Czochralski crystal growth and wafertechnology. Materials Science and Engineering:B, 2000, 73(1–3): 36–41. doi:10.1016/S0921-5107(99)00429-8 4. Yu X, Yang D, Ma X, et al.. Grown-in defects in nitrogen-doped Czochralskisilicon. Journal of Applied Physics, 2002, 92(1): 188–194. doi:10.1063/1.1481190 5. Chen J, Yang D, Li H, et al.. Enhancement effect of germanium on oxygen precipitationin Czochralski silicon. Journal of AppliedPhysics, 2006, 99(7): 073509 (5 pages). doi: 10.1063/1.2188130 6. Tsuya H . Presentstatus and prospect of Si wafers for ultra large scale integration. Japanese Journal of Applied Physics, 2004, 43: 4055–4067. doi:10.1143/JJAP.43.4055 7. Chandrasekhar S, Kim K M . Growth of large diameternecks for large size CZ silicon, semiconductor silicon.In: Huff H R, Tsuya H, Gssele U, eds. Electronics Division PV. Pennington: The Electrochemical Society, 1998, vols. 98–101, 411 8. Yip V F S, Wilcox W R . Dislocation elimination inTHM growth of GaAs. Journal of CrystalGrowth, 1976, 36(1): 29–35. doi:10.1016/0022-0248(76)90210-4 9. Shiraishi Y, Takano K, Matsubara J, et al.. Growth of silicon crystal with a diameter of400 mm and weight of 400 kg. Journal ofCrystal Growth, 2001, 229(1–4): 17–21. doi:10.1016/S0022-0248(01)01042-9 10. Abe T . In: Proceedings of the 6th International Symposium on Ultra Large ScaleIntegration Science and Technology 1997. Pennington: The ElectrochemicalSociety, 1997, vols.97–103, 123 11. Hoshikawa K, Huang X, Taishi T, et al.. Dislocation-free Czochralski silicon crystalgrowth without the dislocation-elimination-necking process. Japanese Journal of Applied Physics, 1999, 38: L1369–L1371. doi:10.1143/JJAP.38.L1369 12. Huang X, Taishi T, Yonenaga I, et al.. Dislocation-free Czochralski Si crystal growthwithout dash necking using a heavily B and Ge codoped Si seed. Japanese Journal of Applied Physics, 2000, 39: L1115–L1117. doi:10.1143/JJAP.39.L1115 13. Watanabe M, Yi K W, Hibiya T, et al.. Direct observation and numerical simulationof molten silicon flow during crystal growth under magnetic fieldsby x-ray radiography and large-scale computation. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1–4): 215–238. doi:10.1016/S0960-8974(99)00013-3 14. Yu H, Sui Y, Zhang F, et al.. Numerical simulation of a Czochralski siliconcrystal growth with a large diameter 300 mm under a cusp magneticfield. Journal of Inorganic Materials, 2005, 20(2): 453–458 (in Chinese) 15. Wang C, Zhang H, Wang T H, et al.. A continuous Czochralski silicon crystal growthsystem. Journal of Crystal Growth, 2003, 250(1–2): 209–214. doi:10.1016/S0022-0248(02)02241-8 16. Watanabe M, Vizman D, Friedrich J, et al.. Large modification of crystal-melt interfaceshape during Si crystal growth by using electromagnetic Czochralskimethod (EMCZ). Journal of Crystal Growth, 2006, 292(2): 252–256. doi:10.1016/j.jcrysgro.2006.04.047 17. Watanabe M, Eguchi M, Wang W, et al.. Controlling oxygen concentration and distributionin 200 mm diameter Si crystals using the electromagnetic Czochralski(EMCZ) method. Journal of Crystal Growth, 2002, 237–239: 1657–1662. doi:10.1016/S0022-0248(01)01824-3 18. Virbulis J, Wetzel Th, Tomzig E, et al.. Silicon melt convection in large size Czochralskicrucibles. Materials Science in SemiconductorProcessing, 2002, 5(4–5): 353–359. doi:10.1016/S1369-8001(02)00123-3 19. Gorbunov L, Pedchenko A, Feodorov A, et al.. Physical modelling of the melt flow during large-diametersilicon single crystal growth. Journalof Crystal Growth, 2003, 257(1–2): 7–18. doi:10.1016/S0022-0248(03)01376-9 20. Akatsuka M, Sueoka K . Pinning effect of punched-outdislocations in carbon-, nitrogen- or boron-doped silicon wafers. Japanese Journal of Applied Physics, 2001, 40: 1240–1241. doi:10.1143/JJAP.40.1240 21. Yang D, Que D, Sumino K . Nitrogen effects on thermal donor and shallow thermaldonor in silicon. Journal of Applied Physics, 1995, 77(2): 943–944. doi:10.1063/1.359024 22. Nakai K, Inoue Y, Yokota H, et al.. Oxygen precipitation in nitrogen-doped Czochralski-grownsilicon crystals. Journal of Applied Physics, 2001, 89(8): 4301–4309. doi:10.1063/1.1356425 23. Shimura F, Hockett R S . Nitrogen effect on oxygenprecipitation in Czochralski silicon. AppliedPhysics Letters, 1986, 48(3): 224–226. doi:10.1063/1.96564 24. Cui C, Yang D, Ma X, et al.. Effect of nitrogen doping on denuded zone formedby rapid thermal process in Czochralski silicon wafer. Physica B: Condensed Matter, 2006, 376–377: 216–219. doi:10.1016/j.physb.2005.12.057 25. Yang D, Chen J, Li H, et al.. Micro-defects in Ge doped Czochralski grownSi crystals. Journal of Crystal Growth, 2006, 292(2): 266–271. doi:10.1016/j.jcrysgro.2006.04.010 26. Li H, Yang D, Ma X, et al.. Germanium effect on oxygen precipitation inCzochralski silicon. Journal of AppliedPhysics, 2004, 96(8): 4161–4165. doi:10.1063/1.1790578 27. Taishi T, Huang X, Yonenaga I, et al.. Dislocation behavior in heavily germanium-dopedsilicon crystal. Materials Science in SemiconductorProcessing, 2002, 5(4–5): 409–412. doi:10.1016/S1369-8001(02)00128-2 28. Chen J, Yang D, Ma X, et al.. Intrinsic gettering Based on rapid thermal annealingin germanium-doped Czochralski silicon. Journal of Applied Physics, 2007, 101(3): 033526 (4 pages). doi: 10.1063/1.2436829 29. Porrini M, Voronkov V V, Falster R . The effect of carbon and antimony on grown-in microdefectsin Czochralski silicon crystals. MaterialsScience and Engineering: B, 2006, 134(2–3): 185–188. doi:10.1016/j.mseb.2006.06.047 30. Nakai K, Kitahara K, Ohta Y, et al.. Crystal defects in epitaxial layer on nitrogen-dopedCzochralski-grown silicon substrate (II) - Suppression of the crystaldefects in epitaxial layer by the control of crystal growth conditionand carbon co-doping. Japanese Journalof Applied Physics, 2004, 43: 1247–1253. doi:10.1143/JJAP.43.1247 31. Imai M, Inoue K, Mayusumi M, et al.. Surface imperfection behavior during the SiH4 epitaxial growth process.Journal of the Electrochemical Society, 2000, 147(4): 1568–1572. doi:10.1149/1.1393395 32. Nakai K, Kitahara K, Ohta Y, et al.. In: Richter H, Kittler M, eds. Solid State Phenomena. Switzerland: Scitec Publications Ltd, 2004, vols. 95–96, 11 33. Mii Y J, Xie Y H, Fitzgerald E A, et al.. Extremely high electron mobility in Si/GexSi1-x structures grown by molecularbeam epitaxy. Applied Physics Letters, 1991, 59(13): 1611–1613. doi:10.1063/1.106246 34. Kim S-J, Shim T-H, Park J-G, et al.. Post-RTA effect on the electrical characteristicsof nano-scale strained Si grown on SiGe-on-insulator n-MOSFET. Journal of the Korean Physical Society, 2007, 50(2): 514–518 35. Tezuka T, Sugiyama N, Mizuno T, et al.. A novel fabrication technique of ultra-thinand relaxed SiGe buffer layers with high Ge content for sub-100 nmstrained silicon-on-insulator MOSFETs. In: Extended Abstracts of the 2000 International Conference on SolidState Devices and Materials, 2000, 472–473 36. Park J-G, Lee G-S, Kim T-H, et al.. Strained Si engineering for nanoscale MOSFETs. Materials Science and Engineering: B, 2006, 134(2–3): 142–153. doi:10.1016/j.mseb.2006.07.014
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.