Front. Mater. Sci. All Journals
REVIEW ARTICLE

Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte

  • Zhiyuan Pang 1 ,
  • Hongzhou Zhang , 1 ,
  • Lu Wang , 2 ,
  • Dawei Song 1 ,
  • Xixi Shi 1 ,
  • Yue Ma 1 ,
  • Linglong Kong , 3 ,
  • Lianqi Zhang 1
Expand
  • 1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • 2. College of Chemistry and Materials Science, Shandong Agricultural University, Taian 271018, China
  • 3. State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Taian 271018, China

Received date: 22 Jun 2022

Accepted date: 08 Oct 2022

Copyright

2023 Higher Education Press

Abstract

Lithium–sulfur (LiS) battery has been considered as one of the most promising future batteries owing to the high theoretical energy density (2600 W·h·kg−1) and the usage of the inexpensive active materials (elemental sulfur). The recent progress in fundamental research and engineering of the LiS battery, involved in electrode, electrolyte, membrane, binder, and current collector, has greatly promoted the performance of Li‒S batteries from the laboratory level to the approaching practical level. However, the safety concerns still deserve attention in the following application stage. This review focuses on the development of the electrolyte for Li‒S batteries from liquid state to solid state. Some problems and the corresponding solutions are emphasized, such as the soluble lithium polysulfides migration, ionic conductivity of electrolyte, the interface contact between electrolyte and electrode, and the reaction kinetics. Moreover, future perspectives of the safe and high-performance Li‒S batteries are also introduced.

Cite this article

Zhiyuan Pang, Hongzhou Zhang, Lu Wang, Dawei Song, Xixi Shi, Yue Ma, Linglong Kong, Lianqi Zhang. Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte[J]. Frontiers of Materials Science, 2023, 17(1): 230630. DOI: 10.1007/s11706-023-0630-3

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21905289 and 22005217), the Tianjin Sci. & Tech. Program (Grant No. 20JCQNJC00440), the Young Elite Scientists Sponsorship Program by Tianjin (Grant No. TJSQNTJ-2017-05), and the Incubation Program of Youth Innovation in Shandong Province, China.
1
Tarascon J M, Armand M . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414: 359–367

2
Bruce P G . Energy storage beyond the horizon: rechargeable lithium batteries.Solid State Ionics, 2008, 179: 752–760

3
Bruce P G, Freunberger S A, Hardwick L J, . Li–O2 and Li–S batteries with high energy storage.Nature Materials, 2012, 11: 19–29

4
Scrosati B . History of lithium batteries.Journal of Solid State Electrochemistry, 2011, 15: 1623–1630

5
Armand M, Tarascon J M . Building better batteries.Nature, 2008, 451: 652–657

6
Nagaura T, Tazawa K . Lithium ion rechargeable battery.Progress in Batteries & Solar Cells, 1990, 9: 209–217

7
Mizushima K, Jones P C, Wiseman P J, , . LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3‒4: 171–174

8
Nishi Y . Lithium ion secondary batteries: past 10 years and the future.Journal of Power Sources, 2001, 100: 101–106

9
Sasaki T, Ukyo Y, Novák P . Memory effect in a lithium-ion battery.Nature Materials, 2013, 12: 569–575

10
Lin L D, Qin K, Zhang Q H, . Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries.Angewandte Chemie International Edition, 2021, 60(15): 8289–8296

11
Gao X P, Yang H X . Multi-electron reaction materials for high energy density batteries.Energy & Environmental Science, 2010, 3: 174–189

12
Han L, Lehmann M L, Zhu J D, . Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries.Frontiers in Energy Research, 2020, 8: 202

13
Duffner F, Kronemeyer N, Tübke J, . Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nature Energy, 2021, 6: 123–134

14
Huang J Q, Boles S T, Tarascon J M . Sensing as the key to battery lifetime and sustainability.Nature Sustainability, 2022, 5: 194–204

15
Wu F, Maier J, Yu Y . Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chemical Society Reviews, 2020, 49(5): 1569–1614

16
Herbert D, Ulam J. Electric dry cells and storage batteries. US Patent, 3 043 896, 1962

17
Rao M L B. Organic electrolyte cells. US Patent, 3 413 154, 1968

18
Wang J L, Yang J, Xie J Y, . Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte.Electrochemistry Communications, 2002, 4: 499–502

19
Wang J L, Yang J, Xie J Y, . A novel conductive polymer‒sulfur composite cathode material for rechargeable lithium batteries.Advanced Materials, 2002, 14: 13–14

20
Mikhaylik Y V, Akridge J R . Polysulfide shuttle study in the Li/S battery system.Journal of the Electrochemical Society, 2004, 151(11): A1969–A1976

21
Mikhaylik Y V. Electrolytes for lithium sulfur cells. US Patent, 7 354 680, 2008

22
Ji X L, Lee K T, Nazar L F . A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries.Nature Materials, 2009, 8: 500–506

23
Zhang B, Qin X, Li G R, . Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres.Energy & Environmental Science, 2010, 3: 1531–1537

24
Geng X, Lin R H, Gu X X, . Water reducer: a highly dispersing binder for high-performance lithium–sulfur batteries.Chinese Journal of Chemistry, 2021, 39(6): 1523–1530

25
Huang L, Li J J, Liu B, . Electrode design for lithium–sulfur batteries: problems and solutions.Advanced Functional Materials, 2020, 30(22): 1910375

26
Lee B J, Kang T H, Lee H Y, . Revisiting the role of conductivity and polarity of host materials for long-life lithium–sulfur battery.Advanced Energy Materials, 2020, 10(22): 1903934

27
Ng S F, Lau M Y L, Ong W J . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion.Advanced Materials, 2021, 33(50): 2008654

28
Li H T, Li Y G, Zhang L . Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries.SusMat, 2022, 2(1): 34–64

29
Fang R P, Zhao S Y, Hou P X, . 3D Interconnected electrode materials with ultrahigh areal sulfur loading for Li‒S batteries.Advanced Materials, 2016, 28(17): 3374–3382

30
Dong Y, Zheng S, Qin J, . All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li‒S batteries.ACS Nano, 2018, 12(3): 2381–2388

31
Sun Q, Fang X, Weng W, . An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium–sulfur batteries.Angewandte Chemie, 2015, 54(36): 10539–10544

32
Chung S H, Chang C H, Manthiram A . A core‒shell electrode for dynamically and statically stable Li‒S battery chemistry.Energy & Environmental Science, 2016, 9(10): 3188–3200

33
Chen S Q, Huang X D, Sun B, . Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 16199–16207

34
Zhang G, Zhang Z W, Peng H J, . A toolbox for lithium–sulfur battery research: methods and protocols.Small Methods, 2017, 1(7): 1700134

35
Ju Z J, Yuan H D, Sheng O W, . Cryo-electron microscopy for unveiling the sensitive battery materials.Small Science, 2021, 1(11): 2100055

36
He Q, Yu B, Li Z H, . Density functional theory for battery materials.Energy & Environmental Materials, 2019, 2(4): 264–279

37
Park C, Kanduč M, Chudoba R, . Molecular simulations of electrolyte structure and dynamics in lithium–sulfur battery solvents.Journal of Power Sources, 2018, 373: 70–78

38
Li C, Liu R, Xiao Y, . Recent progress of separators in lithium–sulfur batteries.Energy Storage Materials, 2021, 40: 439–460

39
Chen W, Lei T Y, Wu C Y, . Designing safe electrolyte systems for a high-stability lithium–sulfur battery.Advanced Energy Materials, 2018, 8(10): 1702348

40
Cheng X B, Yan C, Huang J Q, . The gap between long lifespan Li‒S coin and pouch cells: the importance of lithium metal anode protection.Energy Storage Materials, 2017, 6: 18–25

41
Yang C P, Yin Y X, Zhang S F, . Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nature Communications, 2015, 6: 8058

42
Zhao H J, Deng N P, Yan J, . A review on anode for lithium–sulfur batteries: progress and prospects.Chemical Engineering Journal, 2018, 347: 343–365

43
Ma J M, Li Y T, Grundish N S, . The 2021 battery technology roadmap.Journal of Physics D: Applied Physics, 2021, 54: 183001

44
Wang W K, Wang A B, Jin Z Q . Challenges on practicalization of lithium sulfur batteries.Energy Storage Science and Technology, 2020, 9(2): 593–597

DOI

45
Assary R S, Curtiss L A, Moore J S . Toward a molecular understanding of energetics in Li‒S batteries using nonaqueous electrolytes: a high-level quantum chemical study.The Journal of Physical Chemistry C, 2014, 118: 11545–11558

46
Zhang S S . Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.Journal of Power Sources, 2013, 231: 153–162

47
Cuisinier M, Cabelguen P E, Evers S, . Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy.The Journal of Physical Chemistry Letters, 2013, 4: 3227–3232

48
Zhang W H, Qiao D, Pan J X, . A Li+-conductive microporous carbon–sulfur composite for Li–S batteries.Electrochimica Acta, 2013, 87: 497–502

49
Yang C P, Yin Y X, Guo Y G, . Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study.Journal of the American Chemical Society, 2015, 137: 2215–2218

50
Zhang S S . Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery.Energies, 2014, 7: 4588–4600

51
Helen M, Reddy M A, Diemant T, . Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries.Scientific Reports, 2015, 5: 12146

52
He F, Wu X J, Qian J F, . Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6: 23396

53
Deng C, Wang Z W, Wang S P, . Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7: 12381–12413

54
Weret M A, Kuo C F J, Zeleke T S, . Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium–sulfur batteries.Energy Storage Materials, 2020, 26: 483–493

55
Zhang Y Z, Wu Z Z, Pan G L, . Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium–sulfur battery.ACS Applied Materials & Interfaces, 2017, 9(14): 12436–12444

56
Hu J J, Long G K, Liu S, . A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery.Chemical Communications, 2014, 50: 14647–14650

57
Ue M, Mori S . Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent.Journal of the Electrochemical Society, 1995, 142: 2577–2581

58
Linden D, ed. Handbook of Batteries. 2nd ed. New York: McGraw-Hill, 1995

59
Schmidt M, Heider U, Kuehner A, , . Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001, 97‒98: 557–560

60
Walker C W, Cox J D, Salomon M . Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide.Journal of the Electrochemical Society, 1996, 143: L80

61
Dominey L A, Koch V R, Blakley T . Thermally stable lithium salts for polymer electrolytes.Electrochimica Acta, 1992, 37(9): 1551–1554

62
Xu K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303–4418

63
Suo L M, Hu Y S, Li H, . A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4: 1481

64
Barghamadi M, Musameh M, Rüther T, . Chapter 3: Electrolyte for lithium–sulfur batteries.In: Wild M, Offer G J, eds. Lithium–Sulfur Batteries. John Wiley & Sons Ltd., 2019, 71–120

65
Barghamadi M, Best A S, Bhatt A I, . Lithium–sulfur batteries — the solution is in the electrolyte, but is the electrolyte a solution?.Energy & Environmental Science, 2014, 7: 3902–3920

66
Xu W, Shusterman A J, Videa M, . Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions.Journal of the Electrochemical Society, 2003, 150: E74–E80

67
Hayashi Y, Yamada S, Ishikawa T, . Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li‒O2 batteries.Journal of the Electrochemical Society, 2020, 167: 020542

68
Chang D R, Lee S H, Kim S W, . Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery.Journal of Power Sources, 2002, 112(2): 452–460

69
Dudley J T, Wilkinson D P, Thomas G, . Conductivity of electrolyte for rechargeable lithium batteries.Journal of Power Sources, 1991, 35: 59–82

70
Liu G, Sun Q J, Zhang J L, . Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges.Energy & Fuels, 2021, 35(13): 10405–10427

71
Marcus Y. Ion Solvation. 4th ed. New York: John Wiley & Sons, Inc., 1985

72
Barthel J, Gores H J. Liquid nonaqueous electrolyte. In: Besenhard J O, ed. Handbook of Battery Materials. New York: Wiley-VCH, 1999

73
Aurbach D, ed. Nonaqueous Electrochemistry. New York: Marcel Dekker, Inc., 1999

74
Sun C, Dong J, Lu X D, . Sol electrolyte: pathway to long-term stable lithium metal anode.Advanced Functional Materials, 2021, 31(26): 2100594

75
Jin C B, Liu T F, Sheng O W, . Rejuvenating dead lithium supply in lithium metal anodes by iodine redox.Nature Energy, 2021, 6: 378–387

76
Ai X P, Cao Y L, Yang H X . Simple analysis and possible solutions of the unusual interfacial reactions in Li‒S batteries.Journal of Electrochemistry, 2012, 18(3): 224–228

77
Hyung Y E, Vissers D R, Amine K . Flame-retardant additives for lithium-ion batteries.Journal of Power Sources, 2003, 119–121: 383–387

78
Xu G J, Wang X, Lu D, . Research progress of high safety flame retardant electrolytes for lithium-ion batteries.Energy Storage Science and Technology, 2018, 7(6): 1040–1059

79
He M X, Li X, Holmes N G, . Flame-retardant and polysulfide-suppressed ether-based electrolytes for high-temperature Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13: 38296–38304

80
Yang H, Guo C, Chen J, . An intrinsic flame-retardant organic electrolyte for safe lithium–sulfur batteries.Angewandte Chemie International Edition, 2019, 58(3): 791–795

DOI

81
Wang J, Lin F, Jia H, . Towards a safe lithium–sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode.Angewandte Chemie International Edition, 2014, 53(38): 10099–10104

82
Yu Z, Zhang J J, Wang C, . Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 51: 154–160

DOI

83
Josef E, Yan Y, Stan M C, . Ionic liquids and their polymers in lithium–sulfur batteries.Israel Journal of Chemistry, 2019, 59(9): 832–842

84
Li Z, Zhang S, Terada S, . Promising cell configuration for next-generation energy storage: Li2S/graphite battery enabled by a solvate ionic liquid electrolyte.ACS Applied Materials & Interfaces, 2016, 8(25): 16053–16062

85
Cai X M, Ye B, Ding J, . Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469

86
Sun B, Liu K, Lang J, . Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature.Electrochimica Acta, 2018, 284: 662–668

87
Sun X G, Wang X, Mayes R T, . Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.ChemSusChem, 2012, 5(10): 2079–2085

DOI

88
Liao C, Guo B K, Sun X G, . Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.ChemSusChem, 2015, 8(2): 353–360

DOI

89
Guo W, Han Q, Jiao J R, . In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life.Angewandte Chemie International Edition, 2021, 60(13): 7267–7274

90
Wang W W, Yue X Y, Meng J K, . Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries.Energy Storage Materials, 2019, 18: 414–422

91
Wei J Y, Zhang X Q, Hou L P, . Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries.Advanced Materials, 2020, 32(27): 2003012

92
Li X, Zhao R X, Fu Y Z, . Nitrate additives for lithium batteries: mechanisms, applications, and prospects.eScience, 2021, 1(2): 108–123

93
Lian J, Guo W, Fu Y . Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries.Journal of the American Chemical Society, 2021, 143(29): 11063–11071

94
Chen S R, Wang D W, Zhao Y M, . Superior performance of a lithium–sulfur battery enabled by a dimethyl trisulfide containing electrolyte.Small Methods, 2018, 2(6): 1800038

95
Li S, Dai H L, Li Y H, . Designing Li-protective layer via SOCl2 additive for stabilizing lithium–sulfur battery.Energy Storage Materials, 2019, 18: 222–228

96
Lau K C, Rago N L D, Liao C . Lipophilic additives for highly concentrated electrolytes in lithium–sulfur batteries.Journal of the Electrochemical Society, 2019, 166(12): A2570–A2573

97
Dai H L, Xi K, Liu X, . Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms.Journal of the American Chemical Society, 2018, 140(50): 17515–17521

98
Jiang M F, Zhang Z Q, Tang B, . Polymer electrolytes for Li–S batteries: polymeric fundamentals and performance optimization.Journal of Energy Chemistry, 2021, 58: 300–317

DOI

99
Chen S J, Xiang Y X, Zheng G R, . High-efficiency lithium metal anode enabled by a concentrated/fluorinated ester electrolyte.ACS Applied Materials & Interfaces, 2020, 12(24): 27794–27802

100
Kou W, Wang J, Li W, . Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery.Journal of Membrane Science, 2021, 634: 119432

101
Shan Y, Li L, Yang X . Solid-state polymer electrolyte solves the transfer of lithium ions between the solid–solid interface of the electrode and the electrolyte in lithium–sulfur and lithium-ion batteries.ACS Applied Energy Materials, 2021, 4(5): 5101–5112

102
Cao Y, Zuo P, Lou S, . A quasi-solid-state Li–S battery with high energy density, superior stability and safety.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6533–6542

103
Eshetu G G, Judez X, Li C, . Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect.Journal of the American Chemical Society, 2018, 140(31): 9921–9933

104
Xue Z G, He D, Xie X L . Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(38): 19218–19253

105
Yang W, Yang W, Feng J, . High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte.Electrochimica Acta, 2016, 210: 71–78

106
Jeddi K, Sarikhani K, Qazvini N T, . Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles.Journal of Power Sources, 2014, 245: 656–662

107
Aishova A, Mentbayeva A, Isakhov B, . Gel polymer electrolytes for lithium–sulfur batteries.Materials Today: Proceedings, 2018, 5(11): 22882–22888

108
Cai X, Cui B, Ye B, . Poly(ionic liquid)-based quasi-solid-state copolymer electrolytes for dynamic-reversible adsorption of lithium polysulfides in lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2019, 11(41): 38136–38146

109
Zhang S S, Tran D T . How a gel polymer electrolyte affects performance of lithium/sulfur batteries.Electrochimica Acta, 2013, 114: 296–302

110
Wang X L, Hao X J, Zhang H J, . 3D ultraviolet polymerized electrolyte based on PEO modified PVDF‒HFP electrospun membrane for high-performance lithium–sulfur batteries.Electrochimica Acta, 2020, 329: 135108

111
Zhu P, Yan C Y, Zhu J D, . Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225

112
Zhu Y W, Li J, Liu J . A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium–sulfur battery.Journal of Power Sources, 2017, 351: 17–25

113
Lin Y, Wang X M, Liu J, . Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium–sulfur batteries.Nano Energy, 2017, 31: 478–485

114
Tao X, Liu Y, Liu W, . Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972

115
Li X, Wang D, Wang H, . Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753

116
Jin J, Wen Z Y, Liang X, . Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery.Solid State Ionics, 2012, 225: 604–607

117
Long C H, Li L B, Zhai M, . Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect.Journal of Physics and Chemistry of Solids, 2019, 134: 255–261

118
Han D D, Wang Z Y, Pan G L, . Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(20): 18427–18435

119
Shen Y Q, Zeng F L, Zhou X Y, . A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 48: 267–276

DOI

120
Liu Y, Yang D, Yan W, . Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium–sulfur batteries.iScience, 2019, 19: 316–325

121
Kim J K . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43

122
Shanthi P M, Hanumantha P J, Albuquerque T, . Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494

123
Wang X L, Hao X J, Cai D, . An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium–sulfur batteries.Chemical Engineering Journal, 2020, 382: 122714

124
Jiang J H, Wang A B, Wang W K, . P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 46: 114–122

125
Zhou J Q, Ji H Q, Liu J, . A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery.Energy Storage Materials, 2019, 22: 256–264

126
Sun L P, Li H, Zhao M L, . High-performance lithium–sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte.Chemical Engineering Journal, 2018, 332: 8–15

127
Choudhury S, Saha T, Naskar K, . A highly stretchable gel-polymer electrolyte for lithium–sulfur batteries.Polymer, 2017, 112: 447–456

128
Li W Y, Pang Y, Zhu T C, . A gel polymer electrolyte based lithium–sulfur battery with low self-discharge.Solid State Ionics, 2018, 318: 82–87

129
Wang Y, Ji H, Zhang X, . Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li–S battery.ACS Applied Materials & Interfaces, 2021, 13(14): 16469–16477

130
Zhang F, Luo Y W, Gao X, . Copolymerized sulfur with intrinsically ionic conductivity, superior dispersibility, and compatibility for all-solid-state lithium batteries.ACS Sustainable Chemistry & Engineering, 2020, 8(32): 12100–12109

131
Liu Y, Liu H W, Lin Y T, . Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery.Advanced Functional Materials, 2021, 31(41): 2104863

132
Liu M, Zhou D, He Y B, . Novel gel polymer electrolyte for high-performance lithium–sulfur batteries.Nano Energy, 2016, 22: 278–289

133
Cai X M, Ye B, Ding J L, . Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469

134
Yang Q, Deng N P, Chen J Y, . The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries.Chemical Engineering Journal, 2021, 413: 127427

135
Santiago A, Castillo J, Garbayo I, . Salt additives for improving cyclability of polymer-based all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(5): 4459–4464

136
Song Y X, Wan J, Guo H J, . Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2021, 41: 642–649

137
Croce F, Appetecchi G B, Persi L, . Nanocomposite polymer electrolytes for lithium batteries.Nature, 1998, 394: 456–458

138
Scrosati B, Croce F, Panero S . Progress in lithium polymer battery R&D.Journal of Power Sources, 2001, 100(1–2): 93–100

139
Xiong H M, Wang Z D, Liu D P, . Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity.Advanced Functional Materials, 2005, 15(11): 1751–1756

140
Zhang D, Yan H, Zhu Z, . Electrochemical stability of lithium bis(oxatlato) borate containing solid polymer electrolyte for lithium ion batteries.Journal of Power Sources, 2011, 196(23): 10120–10125

141
Panero S, Scrosati B, Sumathipala H H, . Dual-composite polymer electrolytes with enhanced transport properties.Journal of Power Sources, 2007, 167(2): 510–514

142
Johan M R, Fen L B . Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–LiCF3SO3.Ionics, 2010, 16: 335–338

143
Kumar B, Rodrigues S J, Scanlon L G . Ionic conductivity of polymer‒ceramic composites.Journal of the Electrochemical Society, 2001, 148(10): A1191–A1195

144
Kim S, Hwang E J, Jung Y J, . Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313–314: 216–219

145
Kim Y W, Lee W, Choi B K. Relation between glass transition and melting of PEO–salt complexes. Electrochimica Acta, 2000, 45(8–9): 8–9

146
Mathews K L, Budgin A M, Beeram S, . Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers.Journal of Materials Chemistry, 2013, 1(4): 1108–1116

147
Samir M A S A, Alloin F, Sanchez J Y, . Cellulose nanocrystals reinforced poly(oxyethylene).Polymer, 2004, 45(12): 4149–4157

148
Xia Y, Liang Y F, Xie D, . A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2019, 358: 1047–1053

149
Kuo T C, Hsueh J C, Chiou C Y, . Ionically cross-linked polymers as asymmetric gel polymer electrolytes for enhanced cycle performance of lithium–sulfur batteries.ACS Macro Letters, 2020, 10(1): 110–115

150
Liu J, Qian T, Wang M, . Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium–sulfur battery.Nano Letters, 2018, 18(7): 4598–4605

151
Boulineau S, Courty M, Tarascon J M, . Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ionics, 2012, 221: 1–5

DOI

152
Kinoshita S, Okuda K, Machida N, . All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials.Solid State Ionics, 2014, 256: 97–102

153
Pervez S A, Vinayan B P, Cambaz M A, . Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(32): 16451–16462

154
Yu C H, Cho C S, Li C C . Well-dispersed garnet crystallites for applications in solid-state Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13(10): 11995–12005

155
Nagao M, Hayashi A, Tatsumisago M, . Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries.Journal of Power Sources, 2015, 274: 471–476

156
Takahashi T, Yamamoto O . Conductivity of solid state electrolyte-6-AgS‒HgI2.Denki Kagaku, 1967, 35: 32

157
Yamamoto O . Solid state ionics: a Japan perspective.Science and Technology of Advanced Materials, 2017, 18(1): 504–527

158
Wang C W, Fu K, Kammampata S P, . Garnet-type solid-state electrolytes: materials, interfaces, and batteries.Chemical Reviews, 2020, 120: 4257–4300

159
Alpen U V, Rabenau A, Talat G H . Ionic conductivity in Li3N single crystals.Applied Physics Letters, 1977, 30: 621

160
Goodenough J B, Hong H Y P, Kafalas J A . Fast Na+ ion transport in skeleton structures.Materials Research Bulletin, 1976, 11: 203–220

161
Hong H Y P . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Materials Research Bulletin, 1978, 13: 117–124

162
Kanno R, Hata T, Kawamoto Y, . Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ionics, 2000, 130: 97–104

163
Thangadurai V, Kaack H, Weppner W J F . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta).Journal of the American Ceramic Society, 2003, 86: 437–440

164
Zhao Y, Daemen L L . Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134: 15042–15047

165
Bachman J C, Muy S, Grimaud A, . Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chemical Reviews, 2016, 116: 140–162

166
Richards W D, Miara L J, Wang Y, . Interface stability in solid-state batteries.Chemistry of Materials, 2016, 28: 266–273

167
Camacho-Forero L E, Balbuena P B . Elucidating interfacial phenomena between solid-state electrolyte and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2020, 32: 360–373

168
Agostini M, Aihara Y, Yamada T, . A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte.Solid State Ionics, 2013, 244: 48–51

169
Ohno S, Koerver R, Dewald G, . Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li–S batteries.Chemistry of Materials, 2019, 31(8): 2930–2940

170
Wu J Y, Yuan L X, Zhang W X, . Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.Energy & Environmental Science, 2021, 14(1): 12–36

171
Xu R C, Wu Z, Zhang S Z, . Construction of all-solid-state batteries based on a sulfur‒graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte.Chemistry, 2017, 23(56): 13950–13956

172
Bonnick P, Niitani K, Nose M, . A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24173–24179

173
Wu Z J, Xie Z K, Yoshida A, . Novel SeS2 doped Li2S‒P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries.Chemical Engineering Journal, 2020, 380: 122419

174
Wang S, Zhang Y, Zhang X, . High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2018, 10(49): 42279–42285

175
Yao X Y, Huang N, Han F D, . High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes.Advanced Energy Materials, 2017, 7(17): 1602923

176
AbdelHamid A A, Cheong J L, Ying J Y . Li7La3Zr2O12 sheet-based framework for high-performance lithium–sulfur hybrid quasi-solid battery.Nano Energy, 2020, 71: 104633

177
Tufail M K, Zhou L, Ahmad N, . A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass‒ceramics electrolyte for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2021, 407: 127149

178
Lin Z, Liu Z C, Dudney N J, . Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries.ACS Nano, 2013, 7(3): 2829–2833

179
Kinoshita S, Okuda K, Machida N, . Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 269: 727–734

180
Phuc N H H, Takaki M, Muto H, . Sulfur–carbon nano fiber composite solid electrolyte for all-solid-state Li–S batteries.ACS Applied Energy Materials, 2020, 3(2): 1569–1573

181
Choi S, Yoon I, Nichols W T, . Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium‒sulfur battery using Li2S‒P2S5 solid electrolyte.Ceramics International, 2018, 44(7): 7450–7453

182
Eom M, Son S, Park C, . High performance all-solid-state lithium–sulfur battery using a Li2S‒VGCF nanocomposite.Electrochimica Acta, 2017, 230: 279–284

183
Zhang Y C, Wu Y, Liu Y P, . Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2022, 428: 131040

184
Wang D H, Wu Y Q, Zheng X F, . Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries.Journal of Power Sources, 2020, 479: 228792

185
Han F, Yue J, Fan X, . High-performance all-solid-state lithium‒sulfur battery enabled by a mixed-conductive Li2S nanocomposite.Nano Letters, 2016, 16(7): 4521–4527

186
Yi J, Chen L, Liu Y, . High capacity and superior cyclic performances of all-solid-state lithium‒sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte.ACS Applied Materials & Interfaces, 2019, 11(40): 36774–36781

187
Zhao B S, Wang L, Chen P, . Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass‒ceramic electrolytes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(29): 34477–34485

188
Ge Q, Zhou L, Lian Y M, . Metal-phosphide-doped Li7P3S11 glass‒ceramic electrolyte with high ionic conductivity for all-solid-state lithium–sulfur batteries.Electrochemistry Communications, 2018, 97: 100–104

189
Zhang W, Zhang Y Y, Peng L F, . Elevating reactivity and cyclability of all-solid-state lithium–sulfur batteries by the combination of tellurium-doping and surface coating.Nano Energy, 2020, 76: 105083

190
Nagao M, Imade Y, Narisawa H, . All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte.Journal of Power Sources, 2013, 222: 237–242

191
Yamamoto M, Goto S, Tang R, . Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li–S batteries using flexible carbon materials with large pore volumes.ACS Applied Materials & Interfaces, 2021, 13(32): 38613–38622

192
Zhang Y Y, Sun Y L, Peng L F, . Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium–sulfur battery.Energy Storage Materials, 2019, 21: 287–296

193
Zhang Q, Wan H L, Liu G Z, . Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium–sulfur batteries.Nano Energy, 2019, 57: 771–782

194
Jiang M, Liu G, Zhang Q, . Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(16): 18666–18672

195
Xu R C, Yue J, Liu S F, . Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density.ACS Energy Letters, 2019, 4(5): 1073–1079

196
Yu X W, Bi Z H, Zhao F, . Polysulfide-shuttle control in lithium‒sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte.Advanced Energy Materials, 2016, 6(24): 1601392

197
Yue J, Huang Y, Liu S, . Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries.ACS Applied Materials & Interfaces, 2020, 12(32): 36066–36071

198
Zhang Y B, Liu T, Zhang Q H, . High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(46): 23345–23356

199
Ohno S, Rosenbach C, Dewald G F, . Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium–sulfur batteries.Advanced Functional Materials, 2021, 31(18): 2010620

200
Zhang Q, Huang N, Huang Z, . CNTs@S composite as cathode for all-solid-state lithium–sulfur batteries with ultralong cycle life.Journal of Energy Chemistry, 2020, 40: 151–155

DOI

201
Choi H U, Jin J S, Park J Y, . Performance improvement of all-solid-state Li–S batteries with optimizing morphology and structure of sulfur composite electrode.Journal of Alloys and Compounds, 2017, 723: 787–794

202
Wang Q, Chen Y, Jin J, . A new high-capacity cathode for all-solid-state lithium sulfur battery.Solid State Ionics, 2020, 357: 115500

203
Wang S F, Ding Y, Zhou G M, . Durability of the Li1+xTi2−xAlx(PO4)3 solid electrolyte in lithium–sulfur batteries.ACS Energy Letters, 2016, 1(6): 1080–1085

204
Nagao M, Suzuki K, Imade Y, . All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures.Journal of Power Sources, 2016, 330: 120–126

205
Yu J J, Liu S W, Duan G G, . Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li–sulfur battery.Composites Communications, 2020, 19: 239–245

206
Yan H, Wang H, Wang D, . In situ generated Li2S‒C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading.Nano Letters, 2019, 19(5): 3280–3287

207
Han Q G, Li X L, Shi X X, . Outstanding cycle stability and rate capabilities of the all-solid-state Li–S battery with a Li7P3S11 glass‒ceramic electrolyte and a core–shell S@BP2000 nanocomposite.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(8): 3895–3902

208
Hou L P, Yuan H, Zhao C Z, . Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2020, 25: 436–442

209
Hosseini S M, Varzi A, Ito S, . High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity.Energy Storage Materials, 2020, 27: 61–68

210
Xu S Q, Kwok C Y, Zhou L D, . A high capacity all solid-state Li–sulfur battery enabled by conversion–intercalation hybrid cathode architecture.Advanced Functional Materials, 2020, 31(2): 2004239

211
Mwizerwa J P, Zhang Q, Han F, . Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(16): 18519–18525

212
El-Shinawi H, Cussen E J, Corr S A . A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries.Nanoscale, 2019, 11(41): 19297–19300

213
Suzuki K, Kato D, Hara K, . Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte.Electrochimica Acta, 2017, 258: 110–115

214
Chen F, Zhang Y L, Hu Q, . S/MWCNt/LLZO composite electrode with e/S/Li+ conductive network for all-solid-state lithium–sulfur batteries.Journal of Solid State Chemistry, 2021, 301: 122341

215
Li M, Liu T, Shi Z, . Dense all-electrochem-active electrodes for all-solid-state lithium batteries.Advanced Materials, 2021, 33(26): 2008723

216
Nagao M, Hayashi A, Tatsumisago M . Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte.Electrochimica Acta, 2011, 56(17): 6055–6059

217
Nagata H, Chikusa Y . An all-solid-state lithium–sulfur battery using two solid electrolytes having different functions.Journal of Power Sources, 2016, 329: 268–272

218
Camacho-Forero L E, Balbuena P B . Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2019, 32(1): 360–373

219
Kato Y, Hori S, Saito T, . High-power all-solid-state batteries using sulfide superionic conductors.Nature Energy, 2016, 1: 16030

220
Zhou L, Tufail M K, Ahmad N, . Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(24): 28270–28280

221
Schlem R, Ghidiu M, Culver S P, . Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5−xSexI.ACS Applied Energy Materials, 2020, 3(1): 9–18

222
Ahmad N, Zhou L, Faheem M, . Enhanced air stability and high li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass‒ceramic electrolyte for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(19): 21548–21558

223
Jiang Z, Liang T B, Liu Y, . Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution.ACS Applied Materials & Interfaces, 2020, 12(49): 54662–54670

224
Jiang Z, Li Z X, Wang X L, . Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface.ACS Applied Materials & Interfaces, 2021, 13(26): 30739–30745

225
Zhu J P, Xiang Y X, Zhao J, . Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12.Energy Storage Materials, 2022, 44: 190–196

226
Bai Y, Zhao Y B, Li W D, . New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12930–12937

227
Zhou X R, Huang L W, Elkedim O, . Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity.Journal of Alloys and Compounds, 2022, 891: 161906

228
Zheng C J, Su J M, Song Z, . Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy.Materials Today: Energy, 2022, 27: 101034

229
Zhang Z C, Tian Y T, Liu G Z, . Superionic lithium argyrodite electrolytes by bromine-doping for all-solid-state lithium batteries.Journal of the Electrochemical Society, 2022, 169(4): 040553

230
Xu A H, Wang R M, Yao M Q, . Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte.Nanomaterials, 2022, 12(12): 2082

231
Wu Z K, Chen S Q, Yu C, . Engineering high conductive Li7P2S8I via Cl-doping for all-solid-state Li–S batteries workable at different operating temperatures.Chemical Engineering Journal, 2022, 442: 136346

232
Wang Q T, Liu D X, Ma X F, . Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier.ACS Applied Materials & Interfaces, 2022, 14(19): 22225–22232

233
Shao Q N, Yan C H, Gao M X, . New insights into the effects of Zr substitution and carbon additive on Li3−xEr1−xZrxCl6 halide solid electrolytes.ACS Applied Materials & Interfaces, 2022, 14(6): 8095–8105

234
Ilina E, Lyalin E, Vlasov M, . Structural features and the Li-ion diffusion mechanism in tantalum-doped Li7La3Zr2O12 solid electrolytes.ACS Applied Energy Materials, 2022, 5(3): 2959–2967

235
Xue M Z, Lu W Z, Xue S, . Enhanced Al/Ta co-doped Li7La3Zr2O12 ceramic electrolytes with the reduced Ta doping level for solid-state lithium batteries.Journal of Materials Science, 2021, 56(35): 19614–19622

236
Wang R M, Liu F, Duan J F, . Enhanced electrochemical performance of Al- and Nb-codoped LLZO ceramic powder and its composite solid electrolyte.ACS Applied Energy Materials, 2021, 4(12): 13912–13921

237
Miao C, Kou Z Y, Li J Q, . LiF-doped Li3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries.Ionics, 2022, 28(1): 73–83

238
Walle K Z, Wu Y S, Wu S H, . Lithium Nafion-modified Li6.05Ga0.25La3Zr2O11.8F0.2 trilayer hybrid solid electrolyte for high-voltage cathodes in all-solid-state lithium‒metal batteries.ACS Applied Materials & Interfaces, 2022, 14(13): 15259–15274

239
Chiochan P, Yu X, Sawangphruk M, . A metal organic framework derived solid electrolyte for lithium–sulfur batteries.Advanced Energy Materials, 2020, 10(27): 2001285

240
Kim J K . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43

241
Li X, Wang D, Wang H, . Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753

242
Shanthi P M, Hanumantha P J, Albuquerque T, . Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494

243
Garbayo I, Santiago A, Judez X, . Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(3): 2463–2470

244
Zhang X, Zhang T F, Shao Y F, . Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium–sulfur batteries.ACS Sustainable Chemistry & Engineering, 2021, 9(15): 5396–5404

245
Hao X, Wenren H, Wang X, . A gel polymer electrolyte based on PVDF–HFP modified double polymer matrices via ultraviolet polymerization for lithium‒sulfur batteries.Journal of Colloid and Interface Science, 2020, 558: 145–154

246
Xia Y, Wang X, Xia X, . A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride‒hexafluoropropylene) (PVDF‒HFP) for enhanced solid-state lithium–sulfur batteries.Chemistry, 2017, 23(60): 15203–15209

247
Tao X, Liu Y, Liu W, . Solid-state lithium‒sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972

248
Zhu P, Yan C Y, Zhu J D, . Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225

249
Shao D S, Yang L, Luo K L, . Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery.Chemical Engineering Journal, 2020, 389: 124300

250
Li M, Frerichs J E, Kolek M, . Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode.Advanced Functional Materials, 2020, 30(14): 1910123

251
Li H P, Kuai Y X, Yang J, . A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium–sulfur batteries.Journal of Energy Chemistry, 2022, 65: 616–622

DOI

252
Nagata H, Chikusa Y . Activation of sulfur active material in an all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 263: 141–144

253
Yu Q P, Liu Q, Wang Z Q, . Anode interface in all-solid-state lithium‒metal batteries: challenges and strategies.Acta Physica Sinica, 2020, 69(22): 228805

DOI

254
Rangasamy E, Sahu G, Keum J K, . A high conductivity oxide–sulfide composite lithium superionic conductor.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 4111–4116

255
Wan Z P, Lei D N, Yang W, . Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder.Advanced Functional Materials, 2019, 29(1): 1805301

256
Buschmann H, Berendts S, Mogwitz B, . Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure.Journal of Power Sources, 2012, 206: 236–244

257
Cheng L, Crumlin E J, Chen W, . The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.Physical Chemistry Chemical Physics, 2014, 16: 18294–18300

258
Han X G, Gong Y H, Fu K K, . Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nature Materials, 2017, 16: 572–579

259
Wang C W, Gong Y H, Liu B Y, . Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Letters, 2017, 17(1): 565–571

260
Fu K K, Gong Y H, Liu B Y, . Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.Science Advances, 2017, 3(4): e1601659

261
Luo W, Gong Y H, Zhu Y Z, . Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Advanced Materials, 2017, 29(22): 1606042

262
Luo W, Gong Y H, Zhu Y Z, . Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.Journal of the American Chemical Society, 2016, 138(37): 12258–12262

263
Fu J M, Yu P F, Zhang N, . In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte.Energy & Environmental Science, 2019, 12: 1404–1412

264
Shao Y J, Wang H C, Gong Z L, . Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.ACS Energy Letters, 2018, 3(6): 1212–1218

265
Wei Y, Hu F, Li Y Y, . Constructing stable anodic interphase for quasi-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(35): 39335–39341

266
Hasegawa S, Imanishi N, Zhang T, . Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water.Journal of Power Sources, 2009, 189(1): 371–377

267
Zhang X Y, Xiang Q, Tang S, . Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface.Nano Letters, 2020, 20(4): 2871–2878

268
Pan H, Zhang M H, Cheng Z, . Carbon-free and binder-free Li‒Al alloy anode enabling an all-solid-state Li–S battery with high energy and stability.Science Advances, 2022, 8(15): eabn4372

269
Bi C X, Zhao M, Hou L P, . Anode material options toward 500 Wh·kg−1 lithium–sulfur batteries.Advancement of Science, 2022, 9(2): 2103910

/