Towards safe lithium‒sulfur batteries from liquid-state electrolyte to solid-state electrolyte
Zhiyuan Pang, Hongzhou Zhang, Lu Wang, Dawei Song, Xixi Shi, Yue Ma, Linglong Kong, Lianqi Zhang
Towards safe lithium‒sulfur batteries from liquid-state electrolyte to solid-state electrolyte
Lithium–sulfur (Li‒S) battery has been considered as one of the most promising future batteries owing to the high theoretical energy density (2600 W·h·kg−1) and the usage of the inexpensive active materials (elemental sulfur). The recent progress in fundamental research and engineering of the Li‒S battery, involved in electrode, electrolyte, membrane, binder, and current collector, has greatly promoted the performance of Li‒S batteries from the laboratory level to the approaching practical level. However, the safety concerns still deserve attention in the following application stage. This review focuses on the development of the electrolyte for Li‒S batteries from liquid state to solid state. Some problems and the corresponding solutions are emphasized, such as the soluble lithium polysulfides migration, ionic conductivity of electrolyte, the interface contact between electrolyte and electrode, and the reaction kinetics. Moreover, future perspectives of the safe and high-performance Li‒S batteries are also introduced.
lithium–sulfur battery / liquid electrolyte / polymer electrolyte / solid-state electrolyte / battery safety
[1] |
Tarascon J M, Armand M . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414: 359–367
|
[2] |
Bruce P G . Energy storage beyond the horizon: rechargeable lithium batteries.Solid State Ionics, 2008, 179: 752–760
|
[3] |
Bruce P G, Freunberger S A, Hardwick L J,
|
[4] |
Scrosati B . History of lithium batteries.Journal of Solid State Electrochemistry, 2011, 15: 1623–1630
|
[5] |
Armand M, Tarascon J M . Building better batteries.Nature, 2008, 451: 652–657
|
[6] |
Nagaura T, Tazawa K . Lithium ion rechargeable battery.Progress in Batteries & Solar Cells, 1990, 9: 209–217
|
[7] |
Mizushima K, Jones P C, Wiseman P J, ,
|
[8] |
Nishi Y . Lithium ion secondary batteries: past 10 years and the future.Journal of Power Sources, 2001, 100: 101–106
|
[9] |
Sasaki T, Ukyo Y, Novák P . Memory effect in a lithium-ion battery.Nature Materials, 2013, 12: 569–575
|
[10] |
Lin L D, Qin K, Zhang Q H,
|
[11] |
Gao X P, Yang H X . Multi-electron reaction materials for high energy density batteries.Energy & Environmental Science, 2010, 3: 174–189
|
[12] |
Han L, Lehmann M L, Zhu J D,
|
[13] |
Duffner F, Kronemeyer N, Tübke J,
|
[14] |
Huang J Q, Boles S T, Tarascon J M . Sensing as the key to battery lifetime and sustainability.Nature Sustainability, 2022, 5: 194–204
|
[15] |
Wu F, Maier J, Yu Y . Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chemical Society Reviews, 2020, 49(5): 1569–1614
|
[16] |
Herbert D, Ulam J. Electric dry cells and storage batteries. US Patent, 3 043 896, 1962
|
[17] |
Rao M L B. Organic electrolyte cells. US Patent, 3 413 154, 1968
|
[18] |
Wang J L, Yang J, Xie J Y,
|
[19] |
Wang J L, Yang J, Xie J Y,
|
[20] |
Mikhaylik Y V, Akridge J R . Polysulfide shuttle study in the Li/S battery system.Journal of the Electrochemical Society, 2004, 151(11): A1969–A1976
|
[21] |
Mikhaylik Y V. Electrolytes for lithium sulfur cells. US Patent, 7 354 680, 2008
|
[22] |
Ji X L, Lee K T, Nazar L F . A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries.Nature Materials, 2009, 8: 500–506
|
[23] |
Zhang B, Qin X, Li G R,
|
[24] |
Geng X, Lin R H, Gu X X,
|
[25] |
Huang L, Li J J, Liu B,
|
[26] |
Lee B J, Kang T H, Lee H Y,
|
[27] |
Ng S F, Lau M Y L, Ong W J . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion.Advanced Materials, 2021, 33(50): 2008654
|
[28] |
Li H T, Li Y G, Zhang L . Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries.SusMat, 2022, 2(1): 34–64
|
[29] |
Fang R P, Zhao S Y, Hou P X,
|
[30] |
Dong Y, Zheng S, Qin J,
|
[31] |
Sun Q, Fang X, Weng W,
|
[32] |
Chung S H, Chang C H, Manthiram A . A core‒shell electrode for dynamically and statically stable Li‒S battery chemistry.Energy & Environmental Science, 2016, 9(10): 3188–3200
|
[33] |
Chen S Q, Huang X D, Sun B,
|
[34] |
Zhang G, Zhang Z W, Peng H J,
|
[35] |
Ju Z J, Yuan H D, Sheng O W,
|
[36] |
He Q, Yu B, Li Z H,
|
[37] |
Park C, Kanduč M, Chudoba R,
|
[38] |
Li C, Liu R, Xiao Y,
|
[39] |
Chen W, Lei T Y, Wu C Y,
|
[40] |
Cheng X B, Yan C, Huang J Q,
|
[41] |
Yang C P, Yin Y X, Zhang S F,
|
[42] |
Zhao H J, Deng N P, Yan J,
|
[43] |
Ma J M, Li Y T, Grundish N S,
|
[44] |
Wang W K, Wang A B, Jin Z Q . Challenges on practicalization of lithium sulfur batteries.Energy Storage Science and Technology, 2020, 9(2): 593–597
CrossRef
Google scholar
|
[45] |
Assary R S, Curtiss L A, Moore J S . Toward a molecular understanding of energetics in Li‒S batteries using nonaqueous electrolytes: a high-level quantum chemical study.The Journal of Physical Chemistry C, 2014, 118: 11545–11558
|
[46] |
Zhang S S . Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.Journal of Power Sources, 2013, 231: 153–162
|
[47] |
Cuisinier M, Cabelguen P E, Evers S,
|
[48] |
Zhang W H, Qiao D, Pan J X,
|
[49] |
Yang C P, Yin Y X, Guo Y G,
|
[50] |
Zhang S S . Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery.Energies, 2014, 7: 4588–4600
|
[51] |
Helen M, Reddy M A, Diemant T,
|
[52] |
He F, Wu X J, Qian J F,
|
[53] |
Deng C, Wang Z W, Wang S P,
|
[54] |
Weret M A, Kuo C F J, Zeleke T S,
|
[55] |
Zhang Y Z, Wu Z Z, Pan G L,
|
[56] |
Hu J J, Long G K, Liu S,
|
[57] |
Ue M, Mori S . Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent.Journal of the Electrochemical Society, 1995, 142: 2577–2581
|
[58] |
Linden D, ed
|
[59] |
Schmidt M, Heider U, Kuehner A, ,
|
[60] |
Walker C W, Cox J D, Salomon M . Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide.Journal of the Electrochemical Society, 1996, 143: L80
|
[61] |
Dominey L A, Koch V R, Blakley T . Thermally stable lithium salts for polymer electrolytes.Electrochimica Acta, 1992, 37(9): 1551–1554
|
[62] |
Xu K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303–4418
|
[63] |
Suo L M, Hu Y S, Li H,
|
[64] |
Barghamadi M, Musameh M, Rüther T,
|
[65] |
Barghamadi M, Best A S, Bhatt A I,
|
[66] |
Xu W, Shusterman A J, Videa M,
|
[67] |
Hayashi Y, Yamada S, Ishikawa T,
|
[68] |
Chang D R, Lee S H, Kim S W,
|
[69] |
Dudley J T, Wilkinson D P, Thomas G,
|
[70] |
Liu G, Sun Q J, Zhang J L,
|
[71] |
Marcus Y. Ion Solvation. 4th ed. New York: John Wiley & Sons, Inc., 1985
|
[72] |
Barthel J, Gores H J. Liquid nonaqueous electrolyte. In: Besenhard J O, ed. Handbook of Battery Materials. New York: Wiley-VCH, 1999
|
[73] |
Aurbach D, ed
|
[74] |
Sun C, Dong J, Lu X D,
|
[75] |
Jin C B, Liu T F, Sheng O W,
|
[76] |
Ai X P, Cao Y L, Yang H X . Simple analysis and possible solutions of the unusual interfacial reactions in Li‒S batteries.Journal of Electrochemistry, 2012, 18(3): 224–228
|
[77] |
Hyung Y E, Vissers D R, Amine K . Flame-retardant additives for lithium-ion batteries.Journal of Power Sources, 2003, 119–121: 383–387
|
[78] |
Xu G J, Wang X, Lu D,
|
[79] |
He M X, Li X, Holmes N G,
|
[80] |
Yang H, Guo C, Chen J,
CrossRef
Google scholar
|
[81] |
Wang J, Lin F, Jia H,
|
[82] |
Yu Z, Zhang J J, Wang C,
CrossRef
Google scholar
|
[83] |
Josef E, Yan Y, Stan M C,
|
[84] |
Li Z, Zhang S, Terada S,
|
[85] |
Cai X M, Ye B, Ding J,
|
[86] |
Sun B, Liu K, Lang J,
|
[87] |
Sun X G, Wang X, Mayes R T,
CrossRef
Google scholar
|
[88] |
Liao C, Guo B K, Sun X G,
CrossRef
Google scholar
|
[89] |
Guo W, Han Q, Jiao J R,
|
[90] |
Wang W W, Yue X Y, Meng J K,
|
[91] |
Wei J Y, Zhang X Q, Hou L P,
|
[92] |
Li X, Zhao R X, Fu Y Z,
|
[93] |
Lian J, Guo W, Fu Y . Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries.Journal of the American Chemical Society, 2021, 143(29): 11063–11071
|
[94] |
Chen S R, Wang D W, Zhao Y M,
|
[95] |
Li S, Dai H L, Li Y H,
|
[96] |
Lau K C, Rago N L D, Liao C . Lipophilic additives for highly concentrated electrolytes in lithium–sulfur batteries.Journal of the Electrochemical Society, 2019, 166(12): A2570–A2573
|
[97] |
Dai H L, Xi K, Liu X,
|
[98] |
Jiang M F, Zhang Z Q, Tang B,
CrossRef
Google scholar
|
[99] |
Chen S J, Xiang Y X, Zheng G R,
|
[100] |
Kou W, Wang J, Li W,
|
[101] |
Shan Y, Li L, Yang X . Solid-state polymer electrolyte solves the transfer of lithium ions between the solid–solid interface of the electrode and the electrolyte in lithium–sulfur and lithium-ion batteries.ACS Applied Energy Materials, 2021, 4(5): 5101–5112
|
[102] |
Cao Y, Zuo P, Lou S,
|
[103] |
Eshetu G G, Judez X, Li C,
|
[104] |
Xue Z G, He D, Xie X L . Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(38): 19218–19253
|
[105] |
Yang W, Yang W, Feng J,
|
[106] |
Jeddi K, Sarikhani K, Qazvini N T,
|
[107] |
Aishova A, Mentbayeva A, Isakhov B,
|
[108] |
Cai X, Cui B, Ye B,
|
[109] |
Zhang S S, Tran D T . How a gel polymer electrolyte affects performance of lithium/sulfur batteries.Electrochimica Acta, 2013, 114: 296–302
|
[110] |
Wang X L, Hao X J, Zhang H J,
|
[111] |
Zhu P, Yan C Y, Zhu J D,
|
[112] |
Zhu Y W, Li J, Liu J . A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium–sulfur battery.Journal of Power Sources, 2017, 351: 17–25
|
[113] |
Lin Y, Wang X M, Liu J,
|
[114] |
Tao X, Liu Y, Liu W,
|
[115] |
Li X, Wang D, Wang H,
|
[116] |
Jin J, Wen Z Y, Liang X,
|
[117] |
Long C H, Li L B, Zhai M,
|
[118] |
Han D D, Wang Z Y, Pan G L,
|
[119] |
Shen Y Q, Zeng F L, Zhou X Y,
CrossRef
Google scholar
|
[120] |
Liu Y, Yang D, Yan W,
|
[121] |
Kim J K . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
|
[122] |
Shanthi P M, Hanumantha P J, Albuquerque T,
|
[123] |
Wang X L, Hao X J, Cai D,
|
[124] |
Jiang J H, Wang A B, Wang W K,
|
[125] |
Zhou J Q, Ji H Q, Liu J,
|
[126] |
Sun L P, Li H, Zhao M L,
|
[127] |
Choudhury S, Saha T, Naskar K,
|
[128] |
Li W Y, Pang Y, Zhu T C,
|
[129] |
Wang Y, Ji H, Zhang X,
|
[130] |
Zhang F, Luo Y W, Gao X,
|
[131] |
Liu Y, Liu H W, Lin Y T,
|
[132] |
Liu M, Zhou D, He Y B,
|
[133] |
Cai X M, Ye B, Ding J L,
|
[134] |
Yang Q, Deng N P, Chen J Y,
|
[135] |
Santiago A, Castillo J, Garbayo I,
|
[136] |
Song Y X, Wan J, Guo H J,
|
[137] |
Croce F, Appetecchi G B, Persi L,
|
[138] |
Scrosati B, Croce F, Panero S . Progress in lithium polymer battery R&D.Journal of Power Sources, 2001, 100(1–2): 93–100
|
[139] |
Xiong H M, Wang Z D, Liu D P,
|
[140] |
Zhang D, Yan H, Zhu Z,
|
[141] |
Panero S, Scrosati B, Sumathipala H H,
|
[142] |
Johan M R, Fen L B . Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–LiCF3SO3.Ionics, 2010, 16: 335–338
|
[143] |
Kumar B, Rodrigues S J, Scanlon L G . Ionic conductivity of polymer‒ceramic composites.Journal of the Electrochemical Society, 2001, 148(10): A1191–A1195
|
[144] |
Kim S, Hwang E J, Jung Y J,
|
[145] |
Kim Y W, Lee W, Choi B K. Relation between glass transition and melting of PEO–salt complexes. Electrochimica Acta, 2000, 45(8–9): 8–9
|
[146] |
Mathews K L, Budgin A M, Beeram S,
|
[147] |
Samir M A S A, Alloin F, Sanchez J Y,
|
[148] |
Xia Y, Liang Y F, Xie D,
|
[149] |
Kuo T C, Hsueh J C, Chiou C Y,
|
[150] |
Liu J, Qian T, Wang M,
|
[151] |
Boulineau S, Courty M, Tarascon J M,
CrossRef
Google scholar
|
[152] |
Kinoshita S, Okuda K, Machida N,
|
[153] |
Pervez S A, Vinayan B P, Cambaz M A,
|
[154] |
Yu C H, Cho C S, Li C C . Well-dispersed garnet crystallites for applications in solid-state Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13(10): 11995–12005
|
[155] |
Nagao M, Hayashi A, Tatsumisago M,
|
[156] |
Takahashi T, Yamamoto O . Conductivity of solid state electrolyte-6-AgS‒HgI2.Denki Kagaku, 1967, 35: 32
|
[157] |
Yamamoto O . Solid state ionics: a Japan perspective.Science and Technology of Advanced Materials, 2017, 18(1): 504–527
|
[158] |
Wang C W, Fu K, Kammampata S P,
|
[159] |
Alpen U V, Rabenau A, Talat G H . Ionic conductivity in Li3N single crystals.Applied Physics Letters, 1977, 30: 621
|
[160] |
Goodenough J B, Hong H Y P, Kafalas J A . Fast Na+ ion transport in skeleton structures.Materials Research Bulletin, 1976, 11: 203–220
|
[161] |
Hong H Y P . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Materials Research Bulletin, 1978, 13: 117–124
|
[162] |
Kanno R, Hata T, Kawamoto Y,
|
[163] |
Thangadurai V, Kaack H, Weppner W J F . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta).Journal of the American Ceramic Society, 2003, 86: 437–440
|
[164] |
Zhao Y, Daemen L L . Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134: 15042–15047
|
[165] |
Bachman J C, Muy S, Grimaud A,
|
[166] |
Richards W D, Miara L J, Wang Y,
|
[167] |
Camacho-Forero L E, Balbuena P B . Elucidating interfacial phenomena between solid-state electrolyte and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2020, 32: 360–373
|
[168] |
Agostini M, Aihara Y, Yamada T,
|
[169] |
Ohno S, Koerver R, Dewald G,
|
[170] |
Wu J Y, Yuan L X, Zhang W X,
|
[171] |
Xu R C, Wu Z, Zhang S Z,
|
[172] |
Bonnick P, Niitani K, Nose M,
|
[173] |
Wu Z J, Xie Z K, Yoshida A,
|
[174] |
Wang S, Zhang Y, Zhang X,
|
[175] |
Yao X Y, Huang N, Han F D,
|
[176] |
AbdelHamid A A, Cheong J L, Ying J Y . Li7La3Zr2O12 sheet-based framework for high-performance lithium–sulfur hybrid quasi-solid battery.Nano Energy, 2020, 71: 104633
|
[177] |
Tufail M K, Zhou L, Ahmad N,
|
[178] |
Lin Z, Liu Z C, Dudney N J,
|
[179] |
Kinoshita S, Okuda K, Machida N,
|
[180] |
Phuc N H H, Takaki M, Muto H,
|
[181] |
Choi S, Yoon I, Nichols W T,
|
[182] |
Eom M, Son S, Park C,
|
[183] |
Zhang Y C, Wu Y, Liu Y P,
|
[184] |
Wang D H, Wu Y Q, Zheng X F,
|
[185] |
Han F, Yue J, Fan X,
|
[186] |
Yi J, Chen L, Liu Y,
|
[187] |
Zhao B S, Wang L, Chen P,
|
[188] |
Ge Q, Zhou L, Lian Y M,
|
[189] |
Zhang W, Zhang Y Y, Peng L F,
|
[190] |
Nagao M, Imade Y, Narisawa H,
|
[191] |
Yamamoto M, Goto S, Tang R,
|
[192] |
Zhang Y Y, Sun Y L, Peng L F,
|
[193] |
Zhang Q, Wan H L, Liu G Z,
|
[194] |
Jiang M, Liu G, Zhang Q,
|
[195] |
Xu R C, Yue J, Liu S F,
|
[196] |
Yu X W, Bi Z H, Zhao F,
|
[197] |
Yue J, Huang Y, Liu S,
|
[198] |
Zhang Y B, Liu T, Zhang Q H,
|
[199] |
Ohno S, Rosenbach C, Dewald G F,
|
[200] |
Zhang Q, Huang N, Huang Z,
CrossRef
Google scholar
|
[201] |
Choi H U, Jin J S, Park J Y,
|
[202] |
Wang Q, Chen Y, Jin J,
|
[203] |
Wang S F, Ding Y, Zhou G M,
|
[204] |
Nagao M, Suzuki K, Imade Y,
|
[205] |
Yu J J, Liu S W, Duan G G,
|
[206] |
Yan H, Wang H, Wang D,
|
[207] |
Han Q G, Li X L, Shi X X,
|
[208] |
Hou L P, Yuan H, Zhao C Z,
|
[209] |
Hosseini S M, Varzi A, Ito S,
|
[210] |
Xu S Q, Kwok C Y, Zhou L D,
|
[211] |
Mwizerwa J P, Zhang Q, Han F,
|
[212] |
El-Shinawi H, Cussen E J, Corr S A . A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries.Nanoscale, 2019, 11(41): 19297–19300
|
[213] |
Suzuki K, Kato D, Hara K,
|
[214] |
Chen F, Zhang Y L, Hu Q,
|
[215] |
Li M, Liu T, Shi Z,
|
[216] |
Nagao M, Hayashi A, Tatsumisago M . Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte.Electrochimica Acta, 2011, 56(17): 6055–6059
|
[217] |
Nagata H, Chikusa Y . An all-solid-state lithium–sulfur battery using two solid electrolytes having different functions.Journal of Power Sources, 2016, 329: 268–272
|
[218] |
Camacho-Forero L E, Balbuena P B . Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2019, 32(1): 360–373
|
[219] |
Kato Y, Hori S, Saito T,
|
[220] |
Zhou L, Tufail M K, Ahmad N,
|
[221] |
Schlem R, Ghidiu M, Culver S P,
|
[222] |
Ahmad N, Zhou L, Faheem M,
|
[223] |
Jiang Z, Liang T B, Liu Y,
|
[224] |
Jiang Z, Li Z X, Wang X L,
|
[225] |
Zhu J P, Xiang Y X, Zhao J,
|
[226] |
Bai Y, Zhao Y B, Li W D,
|
[227] |
Zhou X R, Huang L W, Elkedim O,
|
[228] |
Zheng C J, Su J M, Song Z,
|
[229] |
Zhang Z C, Tian Y T, Liu G Z,
|
[230] |
Xu A H, Wang R M, Yao M Q,
|
[231] |
Wu Z K, Chen S Q, Yu C,
|
[232] |
Wang Q T, Liu D X, Ma X F,
|
[233] |
Shao Q N, Yan C H, Gao M X,
|
[234] |
Ilina E, Lyalin E, Vlasov M,
|
[235] |
Xue M Z, Lu W Z, Xue S,
|
[236] |
Wang R M, Liu F, Duan J F,
|
[237] |
Miao C, Kou Z Y, Li J Q,
|
[238] |
Walle K Z, Wu Y S, Wu S H,
|
[239] |
Chiochan P, Yu X, Sawangphruk M,
|
[240] |
Kim J K . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
|
[241] |
Li X, Wang D, Wang H,
|
[242] |
Shanthi P M, Hanumantha P J, Albuquerque T,
|
[243] |
Garbayo I, Santiago A, Judez X,
|
[244] |
Zhang X, Zhang T F, Shao Y F,
|
[245] |
Hao X, Wenren H, Wang X,
|
[246] |
Xia Y, Wang X, Xia X,
|
[247] |
Tao X, Liu Y, Liu W,
|
[248] |
Zhu P, Yan C Y, Zhu J D,
|
[249] |
Shao D S, Yang L, Luo K L,
|
[250] |
Li M, Frerichs J E, Kolek M,
|
[251] |
Li H P, Kuai Y X, Yang J,
CrossRef
Google scholar
|
[252] |
Nagata H, Chikusa Y . Activation of sulfur active material in an all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 263: 141–144
|
[253] |
Yu Q P, Liu Q, Wang Z Q,
CrossRef
Google scholar
|
[254] |
Rangasamy E, Sahu G, Keum J K,
|
[255] |
Wan Z P, Lei D N, Yang W,
|
[256] |
Buschmann H, Berendts S, Mogwitz B,
|
[257] |
Cheng L, Crumlin E J, Chen W,
|
[258] |
Han X G, Gong Y H, Fu K K,
|
[259] |
Wang C W, Gong Y H, Liu B Y,
|
[260] |
Fu K K, Gong Y H, Liu B Y,
|
[261] |
Luo W, Gong Y H, Zhu Y Z,
|
[262] |
Luo W, Gong Y H, Zhu Y Z,
|
[263] |
Fu J M, Yu P F, Zhang N,
|
[264] |
Shao Y J, Wang H C, Gong Z L,
|
[265] |
Wei Y, Hu F, Li Y Y,
|
[266] |
Hasegawa S, Imanishi N, Zhang T,
|
[267] |
Zhang X Y, Xiang Q, Tang S,
|
[268] |
Pan H, Zhang M H, Cheng Z,
|
[269] |
Bi C X, Zhao M, Hou L P,
|
/
〈 | 〉 |