Frontiers of Materials Science >
Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review
Received date: 31 Oct 2020
Accepted date: 16 Dec 2020
Published date: 15 Mar 2021
Copyright
With the rapid improvements in nanomaterials and imaging technology, great progresses have been made in diagnosis and treatment of diseases during the past decades. Fe3O4 magnetic nanoparticles (MNPs) with good biocompatibility and superparamagnetic property are usually used as contrast agent for diagnosis of diseases in magnetic resonance imaging (MRI). Currently, the combination of multiple imaging technologies has been considered as new tendency in diagnosis and treatment of diseases, which could enhance the accuracy and reliability of disease diagnosis and provide new strategies for disease treatment. Therefore, novel contrast agents used for multifunctional imaging are urgently needed. Fe3O4 MNPs are believed to be a potential candidate for construction of multifunctional platform in diagnosis and treatment of diseases. In recent years, there are a plethora of studies concerning the construction of multifunctional platform presented based on Fe3O4 MNPs. In this review, we introduce fabrication methods and modification strategies of Fe3O4 MNPs, expecting great improvements for diagnosis and treatment of diseases in the future.
Miao QIN, Mengjie XU, Lulu NIU, Yizhu CHENG, Xiaolian NIU, Jinlong KONG, Xiumei ZHANG, Yan WEI, Di HUANG. Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review[J]. Frontiers of Materials Science, 2021, 15(1): 36-53. DOI: 10.1007/s11706-021-0543-y
1 |
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4(1): 26–49
|
2 |
Formoso P, Muzzalupo R, Tavano L,
|
3 |
Hoshyar N, Gray S, Han H B,
|
4 |
Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
|
5 |
Baetke S C, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 2015, 88(1054): 20150207
|
6 |
Gupta J. Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry, 2011, 2(2): 81–88
|
7 |
Zhang A, Lieber C M. Nano-bioelectronics. Chemical Reviews, 2016, 116(1): 215–257
|
8 |
Angle M R, Cui B, Melosh N A. Nanotechnology and neurophysiology. Current Opinion in Neurobiology, 2015, 32: 132–140
|
9 |
Noy A. Bionanoelectronics. Advanced Materials, 2011, 23(7): 807–820
|
10 |
Guerra F D, Attia M F, Whitehead D C,
|
11 |
Hu X, Xu J, Wu C,
|
12 |
Ma S, Zhan S, Jia Y,
|
13 |
Sadeghi R, Rodriguez R J, Yao Y,
|
14 |
Iavicoli I, Leso V, Beezhold D H,
|
15 |
Das G, Patra J K, Paramithiotis S,
|
16 |
Rossi M, Passeri D, Sinibaldi A,
|
17 |
Wei M, Le W D. The role of nanomaterials in autophagy. Advances in Experimental Medicine and Biology, 2019, 1206: 273–286
|
18 |
Mohammadinejad R, Moosavi M A, Tavakol S,
|
19 |
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 2018, 13(8): 929–952
|
20 |
Song C, Sun W, Xiao Y,
|
21 |
Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021
|
22 |
Yuan Y, Ding Z, Qian J,
|
23 |
Chen Y, Zhou Q, Li X,
|
24 |
Huang J, Wang L, Zhong X,
|
25 |
Martinkova P, Brtnicky M, Kynicky J,
|
26 |
Qiao R, Jia Q, Zeng J,
|
27 |
Das R, Rinaldi-Montes N, Alonso J,
|
28 |
Nielsen O S, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? European Journal of Cancer, 2001, 37(13): 1587–1589
|
29 |
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16(1): 69–78
|
30 |
Tietze R, Zaloga J, Unterweger H,
|
31 |
Hu X, Ma M, Zeng M,
|
32 |
Harnchana V, Chaiyachad S, Pimanpang S,
|
33 |
Niemiec T, Dudek M, Dziekan N,
|
34 |
Chen S S, Xu H, Xu H J,
|
35 |
Jiao Z, Zhang Y, Fan H. Ultrasonic-microwave method in preparation of polypyrrole-coated magnetic particles for vitamin D extraction in milk. Journal of Chromatography A, 2016, 1457: 7–13
|
36 |
Montaseri H, Alipour S, Vakilinezhad M A. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method. Research in Pharmaceutical Sciences, 2017, 12(4): 274–282
|
37 |
Park J, An K, Hwang Y,
|
38 |
Yu X, Cheng G, Zhou M D,
|
39 |
Li P, Li L, Zhao Y,
|
40 |
Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition in English, 2007, 46(8): 1222–1244
|
41 |
Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 2015, 48(5): 1276– 1285
|
42 |
Park J, Kadasala N R, Abouelmagd S A,
|
43 |
Syu W J, Huang C C, Hsiao J K,
|
44 |
Gan L, Lu Z, Cao D,
|
45 |
Wang H, Zhao X, Meng W,
|
46 |
Nosrati H, Salehiabar M, Manjili H K,
|
47 |
Anbarasu M, Anandan M, Chinnasamy E,
|
48 |
Li C. A targeted approach to cancer imaging and therapy. Nature Materials, 2014, 13(2): 110–115
|
49 |
LaGrow A P, Besenhard M O, Hodzic A,
|
50 |
Jun Y W, Huh Y M, Choi J S,
|
51 |
Hufschmid R, Arami H, Ferguson R M,
|
52 |
Guo H, Zhang Y, Liang W,
|
53 |
Effenberger F B, Couto R A, Kiyohara P K,
|
54 |
Patsula V, Kosinová L, Lovrić M,
|
55 |
Barbosa I A, de Sousa Filho P C, da Silva D L,
|
56 |
Mumtaz S, Wang S, Hussain S Z,
|
57 |
Liu Y, Purich D L, Wu C,
|
58 |
Wang X, Zhuang J, Peng Q,
|
59 |
Cai H, An X, Cui J,
|
60 |
Bagwe R P, Kanicky J R, Palla B J,
|
61 |
Bai F, Wang D, Huo Z,
|
62 |
Liu Z L, Wang X, Yao K,
|
63 |
Zhuang L, Zhang W, Zhao Y,
|
64 |
Lastovina T A, Budnyk A P, Kudryavtsev E A,
|
65 |
Gao L, Tang Y, Wang C,
|
66 |
Zeng Y, Hao R, Xing B,
|
67 |
Carenza E, Barceló V, Morancho A,
|
68 |
Shan D, Deng S, Zhao T,
|
69 |
Chang M, Chang Y J, Chao P Y,
|
70 |
Shahabadi N, Falsafi M, Mansouri K. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141: 213–222
|
71 |
Achilli C, Grandi S, Guidetti G F,
|
72 |
Wei Y, Yin G, Ma C,
|
73 |
Wang G, Gao W, Zhang X,
|
74 |
Felber M, Alberto R. 99mTc radiolabelling of Fe3O4–Au core–shell and Au–Fe3O4 dumbbell-like nanoparticles. Nanoscale, 2015, 7(15): 6653–6660
|
75 |
Gou M, Li S, Zhang L,
|
76 |
Shen S, Ding B, Zhang S,
|
77 |
Nayak S, Lyon L A. Soft nanotechnology with soft nanoparticles. Angewandte Chemie International Edition, 2005, 44(47): 7686–7708
|
78 |
Tang Z, Zhao X, Zhao T,
|
79 |
Dutta B, Shetake N G, Barick B K,
|
80 |
Justin C, Samrot A V, Sruthi D P,
|
81 |
Can H K, Kavlak S, ParviziKhosroshahi S,
|
82 |
Barrow M, Taylor A, Carrión J C,
|
83 |
Wu D, Zhu L, Li Y,
|
84 |
Soares P I P, Machado D, Laia C,
|
85 |
Zhang X, Wang Y, Yang S. Simultaneous removal of Co(II) and 1-naphthol by core–shell structured Fe3O4@cyclodextrin magnetic nanoparticles. Carbohydrate Polymers, 2014, 114: 521–529
|
86 |
Xie J, Huang J, Li X,
|
87 |
Wang F, Li X, Li W,
|
88 |
Assa F, Jafarizadeh-Malmiri H, Ajamein H,
|
89 |
Xing H, Zhang S, Bu W,
|
90 |
Gupta A K, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobioscience, 2004, 3(1): 66–73
|
91 |
Yang G, Ma W, Zhang B,
|
92 |
Chen Y, Zhang F, Wang Q,
|
93 |
Wang L, Wang M, Zhou B,
|
94 |
Yang C, Guo W, Cui L,
|
95 |
Wei H, Insin N, Lee J,
|
96 |
Liu Y, Chen T, Wu C,
|
97 |
Wang J J, Lei K F, Han F. Tumor microenvironment: Recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences, 2018, 22(12): 3855–3864
|
98 |
Zaimy M A, Saffarzadeh N, Mohammadi A,
|
99 |
Li L, Gao F, Jiang W,
|
100 |
Choi H, Choi S R, Zhou R,
|
101 |
Yang J, Luo Y, Xu Y,
|
102 |
Luo Y, Yang J, Yan Y,
|
103 |
Zhang H, Li J, Hu Y,
|
104 |
Cui Y, Zhang C, Luo R,
|
105 |
Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7(7): a026781
|
106 |
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters, 2017, 387: 61–68
|
107 |
Li H, Zhao Y, Jia Y,
|
108 |
Li E, Yang Y, Hao G,
|
109 |
Yang T, Niu D, Chen J,
|
110 |
Gao Z, Hou Y, Zeng J,
|
111 |
Lu J, Sun J, Li F,
|
112 |
Ma T, Hou Y, Zeng J,
|
113 |
Qin M, Peng Y, Xu M,
|
114 |
Zhou Z, Huang D, Bao J,
|
115 |
Lu C, Dong P, Pi L,
|
116 |
Xu S, Yang F, Zhou X,
|
117 |
Cui X, Mathe D, Kovács N,
|
118 |
Sánchez A, Ovejero Paredes K, Ruiz-Cabello J,
|
119 |
Cai W, Guo M, Weng X,
|
120 |
Zhang T Y, Li F Y, Xu Q H,
|
121 |
Huh Y M, Lee E S, Lee J H,
|
122 |
Arriortua O K, Insausti M, Lezama L,
|
123 |
Xu C, Zheng Y, Gao W,
|
124 |
Li L, Fu S, Chen C,
|
125 |
Liu Y, Yang Z, Huang X,
|
/
〈 |
|
〉 |