Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review
Miao QIN, Mengjie XU, Lulu NIU, Yizhu CHENG, Xiaolian NIU, Jinlong KONG, Xiumei ZHANG, Yan WEI, Di HUANG
Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review
With the rapid improvements in nanomaterials and imaging technology, great progresses have been made in diagnosis and treatment of diseases during the past decades. Fe3O4 magnetic nanoparticles (MNPs) with good biocompatibility and superparamagnetic property are usually used as contrast agent for diagnosis of diseases in magnetic resonance imaging (MRI). Currently, the combination of multiple imaging technologies has been considered as new tendency in diagnosis and treatment of diseases, which could enhance the accuracy and reliability of disease diagnosis and provide new strategies for disease treatment. Therefore, novel contrast agents used for multifunctional imaging are urgently needed. Fe3O4 MNPs are believed to be a potential candidate for construction of multifunctional platform in diagnosis and treatment of diseases. In recent years, there are a plethora of studies concerning the construction of multifunctional platform presented based on Fe3O4 MNPs. In this review, we introduce fabrication methods and modification strategies of Fe3O4 MNPs, expecting great improvements for diagnosis and treatment of diseases in the future.
Fe3O4 MNPs / preparation methods / modification strategy / multifunctional platform
[1] |
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4(1): 26–49
CrossRef
Pubmed
Google scholar
|
[2] |
Formoso P, Muzzalupo R, Tavano L,
CrossRef
Pubmed
Google scholar
|
[3] |
Hoshyar N, Gray S, Han H B,
CrossRef
Pubmed
Google scholar
|
[4] |
Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
CrossRef
Pubmed
Google scholar
|
[5] |
Baetke S C, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 2015, 88(1054): 20150207
CrossRef
Pubmed
Google scholar
|
[6] |
Gupta J. Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry, 2011, 2(2): 81–88
CrossRef
Pubmed
Google scholar
|
[7] |
Zhang A, Lieber C M. Nano-bioelectronics. Chemical Reviews, 2016, 116(1): 215–257
CrossRef
Pubmed
Google scholar
|
[8] |
Angle M R, Cui B, Melosh N A. Nanotechnology and neurophysiology. Current Opinion in Neurobiology, 2015, 32: 132–140
CrossRef
Pubmed
Google scholar
|
[9] |
Noy A. Bionanoelectronics. Advanced Materials, 2011, 23(7): 807–820
CrossRef
Pubmed
Google scholar
|
[10] |
Guerra F D, Attia M F, Whitehead D C,
CrossRef
Pubmed
Google scholar
|
[11] |
Hu X, Xu J, Wu C,
CrossRef
Pubmed
Google scholar
|
[12] |
Ma S, Zhan S, Jia Y,
CrossRef
Pubmed
Google scholar
|
[13] |
Sadeghi R, Rodriguez R J, Yao Y,
CrossRef
Pubmed
Google scholar
|
[14] |
Iavicoli I, Leso V, Beezhold D H,
CrossRef
Pubmed
Google scholar
|
[15] |
Das G, Patra J K, Paramithiotis S,
CrossRef
Pubmed
Google scholar
|
[16] |
Rossi M, Passeri D, Sinibaldi A,
CrossRef
Pubmed
Google scholar
|
[17] |
Wei M, Le W D. The role of nanomaterials in autophagy. Advances in Experimental Medicine and Biology, 2019, 1206: 273–286
CrossRef
Pubmed
Google scholar
|
[18] |
Mohammadinejad R, Moosavi M A, Tavakol S,
CrossRef
Pubmed
Google scholar
|
[19] |
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 2018, 13(8): 929–952
CrossRef
Pubmed
Google scholar
|
[20] |
Song C, Sun W, Xiao Y,
CrossRef
Pubmed
Google scholar
|
[21] |
Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021
CrossRef
Pubmed
Google scholar
|
[22] |
Yuan Y, Ding Z, Qian J,
CrossRef
Pubmed
Google scholar
|
[23] |
Chen Y, Zhou Q, Li X,
CrossRef
Pubmed
Google scholar
|
[24] |
Huang J, Wang L, Zhong X,
CrossRef
Pubmed
Google scholar
|
[25] |
Martinkova P, Brtnicky M, Kynicky J,
CrossRef
Pubmed
Google scholar
|
[26] |
Qiao R, Jia Q, Zeng J,
CrossRef
Google scholar
|
[27] |
Das R, Rinaldi-Montes N, Alonso J,
CrossRef
Pubmed
Google scholar
|
[28] |
Nielsen O S, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? European Journal of Cancer, 2001, 37(13): 1587–1589
CrossRef
Pubmed
Google scholar
|
[29] |
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16(1): 69–78
CrossRef
Pubmed
Google scholar
|
[30] |
Tietze R, Zaloga J, Unterweger H,
CrossRef
Pubmed
Google scholar
|
[31] |
Hu X, Ma M, Zeng M,
CrossRef
Pubmed
Google scholar
|
[32] |
Harnchana V, Chaiyachad S, Pimanpang S,
CrossRef
Pubmed
Google scholar
|
[33] |
Niemiec T, Dudek M, Dziekan N,
CrossRef
Pubmed
Google scholar
|
[34] |
Chen S S, Xu H, Xu H J,
CrossRef
Pubmed
Google scholar
|
[35] |
Jiao Z, Zhang Y, Fan H. Ultrasonic-microwave method in preparation of polypyrrole-coated magnetic particles for vitamin D extraction in milk. Journal of Chromatography A, 2016, 1457: 7–13
CrossRef
Pubmed
Google scholar
|
[36] |
Montaseri H, Alipour S, Vakilinezhad M A. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method. Research in Pharmaceutical Sciences, 2017, 12(4): 274–282
CrossRef
Pubmed
Google scholar
|
[37] |
Park J, An K, Hwang Y,
CrossRef
Pubmed
Google scholar
|
[38] |
Yu X, Cheng G, Zhou M D,
CrossRef
Pubmed
Google scholar
|
[39] |
Li P, Li L, Zhao Y,
CrossRef
Pubmed
Google scholar
|
[40] |
Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition in English, 2007, 46(8): 1222–1244
CrossRef
Pubmed
Google scholar
|
[41] |
Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 2015, 48(5): 1276– 1285
CrossRef
Pubmed
Google scholar
|
[42] |
Park J, Kadasala N R, Abouelmagd S A,
CrossRef
Pubmed
Google scholar
|
[43] |
Syu W J, Huang C C, Hsiao J K,
CrossRef
Pubmed
Google scholar
|
[44] |
Gan L, Lu Z, Cao D,
CrossRef
Pubmed
Google scholar
|
[45] |
Wang H, Zhao X, Meng W,
CrossRef
Pubmed
Google scholar
|
[46] |
Nosrati H, Salehiabar M, Manjili H K,
CrossRef
Pubmed
Google scholar
|
[47] |
Anbarasu M, Anandan M, Chinnasamy E,
CrossRef
Pubmed
Google scholar
|
[48] |
Li C. A targeted approach to cancer imaging and therapy. Nature Materials, 2014, 13(2): 110–115
CrossRef
Pubmed
Google scholar
|
[49] |
LaGrow A P, Besenhard M O, Hodzic A,
CrossRef
Pubmed
Google scholar
|
[50] |
Jun Y W, Huh Y M, Choi J S,
CrossRef
Pubmed
Google scholar
|
[51] |
Hufschmid R, Arami H, Ferguson R M,
CrossRef
Pubmed
Google scholar
|
[52] |
Guo H, Zhang Y, Liang W,
CrossRef
Pubmed
Google scholar
|
[53] |
Effenberger F B, Couto R A, Kiyohara P K,
CrossRef
Pubmed
Google scholar
|
[54] |
Patsula V, Kosinová L, Lovrić M,
CrossRef
Pubmed
Google scholar
|
[55] |
Barbosa I A, de Sousa Filho P C, da Silva D L,
CrossRef
Pubmed
Google scholar
|
[56] |
Mumtaz S, Wang S, Hussain S Z,
CrossRef
Pubmed
Google scholar
|
[57] |
Liu Y, Purich D L, Wu C,
CrossRef
Pubmed
Google scholar
|
[58] |
Wang X, Zhuang J, Peng Q,
CrossRef
Pubmed
Google scholar
|
[59] |
Cai H, An X, Cui J,
CrossRef
Pubmed
Google scholar
|
[60] |
Bagwe R P, Kanicky J R, Palla B J,
Pubmed
|
[61] |
Bai F, Wang D, Huo Z,
CrossRef
Pubmed
Google scholar
|
[62] |
Liu Z L, Wang X, Yao K,
CrossRef
Google scholar
|
[63] |
Zhuang L, Zhang W, Zhao Y,
CrossRef
Pubmed
Google scholar
|
[64] |
Lastovina T A, Budnyk A P, Kudryavtsev E A,
CrossRef
Pubmed
Google scholar
|
[65] |
Gao L, Tang Y, Wang C,
CrossRef
Pubmed
Google scholar
|
[66] |
Zeng Y, Hao R, Xing B,
CrossRef
Pubmed
Google scholar
|
[67] |
Carenza E, Barceló V, Morancho A,
CrossRef
Pubmed
Google scholar
|
[68] |
Shan D, Deng S, Zhao T,
CrossRef
Pubmed
Google scholar
|
[69] |
Chang M, Chang Y J, Chao P Y,
CrossRef
Pubmed
Google scholar
|
[70] |
Shahabadi N, Falsafi M, Mansouri K. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141: 213–222
CrossRef
Pubmed
Google scholar
|
[71] |
Achilli C, Grandi S, Guidetti G F,
CrossRef
Pubmed
Google scholar
|
[72] |
Wei Y, Yin G, Ma C,
CrossRef
Pubmed
Google scholar
|
[73] |
Wang G, Gao W, Zhang X,
CrossRef
Pubmed
Google scholar
|
[74] |
Felber M, Alberto R. 99mTc radiolabelling of Fe3O4–Au core–shell and Au–Fe3O4 dumbbell-like nanoparticles. Nanoscale, 2015, 7(15): 6653–6660
CrossRef
Pubmed
Google scholar
|
[75] |
Gou M, Li S, Zhang L,
CrossRef
Pubmed
Google scholar
|
[76] |
Shen S, Ding B, Zhang S,
CrossRef
Pubmed
Google scholar
|
[77] |
Nayak S, Lyon L A. Soft nanotechnology with soft nanoparticles. Angewandte Chemie International Edition, 2005, 44(47): 7686–7708
CrossRef
Pubmed
Google scholar
|
[78] |
Tang Z, Zhao X, Zhao T,
CrossRef
Pubmed
Google scholar
|
[79] |
Dutta B, Shetake N G, Barick B K,
CrossRef
Pubmed
Google scholar
|
[80] |
Justin C, Samrot A V, Sruthi D P,
CrossRef
Pubmed
Google scholar
|
[81] |
Can H K, Kavlak S, ParviziKhosroshahi S,
CrossRef
Pubmed
Google scholar
|
[82] |
Barrow M, Taylor A, Carrión J C,
CrossRef
Pubmed
Google scholar
|
[83] |
Wu D, Zhu L, Li Y,
CrossRef
Pubmed
Google scholar
|
[84] |
Soares P I P, Machado D, Laia C,
CrossRef
Pubmed
Google scholar
|
[85] |
Zhang X, Wang Y, Yang S. Simultaneous removal of Co(II) and 1-naphthol by core–shell structured Fe3O4@cyclodextrin magnetic nanoparticles. Carbohydrate Polymers, 2014, 114: 521–529
CrossRef
Pubmed
Google scholar
|
[86] |
Xie J, Huang J, Li X,
CrossRef
Pubmed
Google scholar
|
[87] |
Wang F, Li X, Li W,
CrossRef
Pubmed
Google scholar
|
[88] |
Assa F, Jafarizadeh-Malmiri H, Ajamein H,
CrossRef
Pubmed
Google scholar
|
[89] |
Xing H, Zhang S, Bu W,
CrossRef
Pubmed
Google scholar
|
[90] |
Gupta A K, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobioscience, 2004, 3(1): 66–73
CrossRef
Pubmed
Google scholar
|
[91] |
Yang G, Ma W, Zhang B,
CrossRef
Pubmed
Google scholar
|
[92] |
Chen Y, Zhang F, Wang Q,
CrossRef
Pubmed
Google scholar
|
[93] |
Wang L, Wang M, Zhou B,
CrossRef
Pubmed
Google scholar
|
[94] |
Yang C, Guo W, Cui L,
CrossRef
Pubmed
Google scholar
|
[95] |
Wei H, Insin N, Lee J,
CrossRef
Pubmed
Google scholar
|
[96] |
Liu Y, Chen T, Wu C,
CrossRef
Pubmed
Google scholar
|
[97] |
Wang J J, Lei K F, Han F. Tumor microenvironment: Recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences, 2018, 22(12): 3855–3864
Pubmed
|
[98] |
Zaimy M A, Saffarzadeh N, Mohammadi A,
CrossRef
Pubmed
Google scholar
|
[99] |
Li L, Gao F, Jiang W,
CrossRef
Google scholar
|
[100] |
Choi H, Choi S R, Zhou R,
CrossRef
Pubmed
Google scholar
|
[101] |
Yang J, Luo Y, Xu Y,
CrossRef
Pubmed
Google scholar
|
[102] |
Luo Y, Yang J, Yan Y,
CrossRef
Pubmed
Google scholar
|
[103] |
Zhang H, Li J, Hu Y,
CrossRef
Pubmed
Google scholar
|
[104] |
Cui Y, Zhang C, Luo R,
CrossRef
Pubmed
Google scholar
|
[105] |
Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7(7): a026781
CrossRef
Pubmed
Google scholar
|
[106] |
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters, 2017, 387: 61–68
CrossRef
Pubmed
Google scholar
|
[107] |
Li H, Zhao Y, Jia Y,
CrossRef
Pubmed
Google scholar
|
[108] |
Li E, Yang Y, Hao G,
CrossRef
Pubmed
Google scholar
|
[109] |
Yang T, Niu D, Chen J,
CrossRef
Pubmed
Google scholar
|
[110] |
Gao Z, Hou Y, Zeng J,
CrossRef
Pubmed
Google scholar
|
[111] |
Lu J, Sun J, Li F,
CrossRef
Pubmed
Google scholar
|
[112] |
Ma T, Hou Y, Zeng J,
CrossRef
Pubmed
Google scholar
|
[113] |
Qin M, Peng Y, Xu M,
CrossRef
Pubmed
Google scholar
|
[114] |
Zhou Z, Huang D, Bao J,
CrossRef
Pubmed
Google scholar
|
[115] |
Lu C, Dong P, Pi L,
CrossRef
Pubmed
Google scholar
|
[116] |
Xu S, Yang F, Zhou X,
CrossRef
Pubmed
Google scholar
|
[117] |
Cui X, Mathe D, Kovács N,
CrossRef
Pubmed
Google scholar
|
[118] |
Sánchez A, Ovejero Paredes K, Ruiz-Cabello J,
CrossRef
Pubmed
Google scholar
|
[119] |
Cai W, Guo M, Weng X,
CrossRef
Google scholar
|
[120] |
Zhang T Y, Li F Y, Xu Q H,
CrossRef
Google scholar
|
[121] |
Huh Y M, Lee E S, Lee J H,
CrossRef
Google scholar
|
[122] |
Arriortua O K, Insausti M, Lezama L,
CrossRef
Pubmed
Google scholar
|
[123] |
Xu C, Zheng Y, Gao W,
CrossRef
Pubmed
Google scholar
|
[124] |
Li L, Fu S, Chen C,
CrossRef
Pubmed
Google scholar
|
[125] |
Liu Y, Yang Z, Huang X,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |