Contents
Introduction
Methods
Synthesis of NF nanoparticles Materials characterization Electrode preparation for supercapacitor application Supercapacitor device fabrication Computational section
Results and discussion
XRD and Raman analysis Morphological and surface area analysis DFT analysis The three-electrode method of electrochemical analysis Electrochemical analysis of the fabricated symmetrical supercapacitor
Conclusions
References
Introduction
Methods
Synthesis of NF nanoparticles
Materials characterization
Electrode preparation for supercapacitor application
Supercapacitor device fabrication
Computational section
Results and discussion
XRD and Raman analysis
Morphological and surface area analysis
Fig.2 (a) FESEM image, (b) EDX data (inset shows the elemental composition), (c) low magnification TEM image, (d) high magnification TEM image, (e) HRTEM image with the measured interplanar distance matching with (4 2 2) and (3 1 1) crystal planes and (f) SAED pattern of NF nanoparticles. |
DFT analysis
The three-electrode method of electrochemical analysis
Fig.6 Electrochemical analysis of NF in a three-electrode system: (a) CV curves; (b) GCD curves; (c) Nyquist plot (inset showing high-frequency region and fitted equivalent circuit) and (d) cyclic stability data of NF for 10000 discharge cycles at a constant current density of 8 A·g−1 in 2 mol·L−1 KOH electrolyte (inset showing the first 10 cycles). |
Tab.1 Comparison of electrochemical properties of NF nanoparticles from this work with other reported NF nanostructures and graphene/NiFe2O4 composites in the three-electrode set-up [8,10–12,14,34] |
Electrode material | Specific capacitance @scan rate | Specific capacitance (@current density) | Electrolyte | Cyclic stability | Refs. |
---|---|---|---|---|---|
NF nanoparticles | 478 F·g−1@5 mV·s−1 | 368 F·g−1@1 A·g−1 | 2 mol·L−1 KOH | 88% after 10000 cycles@8 A·g−1 | this work |
NF nanoassemblies | 109.2 F·g−1@2 mV·s−1 | – | 3 mol·L−1 KOH | >90% after 1000 cycles@10 mV·s−1 | [8] |
NF nanoparticles | – | 174 F·g−1@1 A·g-1 | 1 mol·L−1 KOH | 130% after 2000 cycles@1 A·g−1 | [10] |
NF nanoflowers | – | 435 F·g−1@5 mA·cm−2 | 6 mol·L−1 KOH | 80% after 7000 cycles | [11] |
NF nanocrystals | – | 562 F·g−1 | 2 mol·L−1 KOH | 84% after 1000 cycles@4 A·g−1 | [12] |
NF nanoparticles | 97.5 F·g−1@2 mV·s−1 | – | 0.1 mol·L−1 NaCl | 100% after 100 cycles@5 mV·s−1 | [14] |
NF nanocubes | – | 325 F·g−1@3 A·g−1 | 1 mol·L−1 KNO3 | 78.9% after 10000 cycles@3 A·g−1 | [34] |
Electrochemical analysis of the fabricated symmetrical supercapacitor
Fig.8 Electrochemical analysis of the fabricated supercapacitor device: (a) CV curves; (b) GCD curves; (c) Nyquist plot; (d) cyclic stability study for 10000 discharge cycles at a constant current density of 8 A·g−1 in 2 mol·L−1 KOH electrolyte (inset showing first 20 cycles with good charge–discharge behaviour). |
Tab.2 Comparison of electrochemical properties of NF supercapacitor device of the present work with that reported in the literature [11,34–37] |
Electrode material | Specific capacitance @scan rate | Specific capacitance @current density | Electrolyte | Cyclic stability | Refs. |
---|---|---|---|---|---|
NF nanoparticles symmetric device | 89 F·g−1@2 mV·s−1 | 64 F·g−1@0.5 A·g−1 | 2 mol·L−1 KOH | 81% after 10000 cycles@8 A·g−1 | this work |
NF nanosheet | – | 236 F·g−1@2 mA·cm−2 | PVA-KOH | 98% after 7000 cycles | [11] |
NiFe2O4@rGO | – | 139 F·g−1@0.5 A·g−1 | 1 mol·L−1 KNO3 | 92.5% after 6000 cycles@3 A·g−1 | [34] |
NiFe2O4@rGO hybrid | 210.9 F·g−1@0.5 A·g−1 | 1 mol·L−1 Na2SO4 | 94.2% after 5000 cycles@10 A·g−1 | [35] | |
NiFe2O4@NiFe2O4//AC asymmetric device | – | – | 2 mol·L−1 KOH | 95.3% after 3000 cycles@10 mA·cm−2 | [36] |
1D NiFe2O4/graphene composite symmetric device | – | 138 F·g−1@0.1 A·g−1 | 6 mol·L−1 KOH | 40% after 10000 cycles@1 A·g−1 | [37] |