RESEARCH ARTICLE

Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization

  • Abdollah SABOORI ,
  • Matteo PAVESE ,
  • Claudio BADINI ,
  • Paolo FINO
Expand
  • Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

Received date: 27 Feb 2017

Accepted date: 05 Apr 2017

Published date: 26 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Aluminum and copper matrix nanocomposites reinforced by graphene nanoplatelets (GNPs) were successfully fabricated by a wet mixing method followed by conventional powder metallurgy. The uniform dispersion of GNPs within the metal matrices showed that the wet mixing method has a great potential to be used as a mixing technique. However, by increasing the GNPs content, GNPs agglomeration was more visible. DSC and XRD of Al/GNPs nanocomposites showed that no new phase formed below the melting point of Al. Microstructural observations in both nanocomposites reveal the evident grain refinement effect as a consequence of GNPs addition. The interfacial bonding evaluation shows a poor interfacial bonding between GNPs and Al, while the interfacial bonding between Cu and GNPs is strong enough to improve the properties of the Cu/GNPs nanocomposites. In both composites, the coefficient of thermal expansion decreases as a function of GNPs while, their hardness is improved by increasing the GNPs content as well as their elastic modulus.

Cite this article

Abdollah SABOORI , Matteo PAVESE , Claudio BADINI , Paolo FINO . Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Frontiers of Materials Science, 2017 , 11(2) : 171 -181 . DOI: 10.1007/s11706-017-0377-9

Disclosure of potential conflicts of interests

The authors declare that there is no conflict of interest.
1
Geim A K, Novoselov  K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

DOI PMID

2
Castro Neto A H ,  Guinea F ,  Peres N M R , . The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162

DOI

3
Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

DOI PMID

4
Molitor F, Güttinger  J, Stampfer C , . Electronic properties of graphene nanostructures. Journal of Physics: Condensed Matter, 2011, 23(24): 243201

DOI PMID

5
Ovid’ko I A . Review on grain boundaries in graphene. Curved poly- and nanocrystalline graphene structures as new carbon allotropes. Reviews on Advanced Materials Science, 2012, 30(3): 201–224

6
Rashad M, Pan  F, Yu Z , . Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Progress in Natural Science: Materials International, 2015, 25(5): 460–470

DOI

7
Rashad M, Pan  F, Hu H , . Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering A, 2015, 630: 36–44

DOI

8
Rashad M, Pan  F, Tang A , . Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, 2014, 24(2): 101–108

DOI

9
Kuilla T, Bhadra  S, Yao D , . Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010, 35(11): 1350–1375

DOI

10
Potts J R, Dreyer  D R, Bielawski  C W, . Graphene-based polymer nanocomposites. Polymer, 2011, 52(1): 5–25

DOI

11
Tapasztó O, Tapasztó  L, Markó M , . Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 2011, 511(4–6): 340–343

DOI

12
Walker L S, Marotto  V R, Rafiee  M A, . Toughening in graphene ceramic composites. ACS Nano, 2011, 5(4): 3182–3190

DOI PMID

13
Kvetková L, Duszová  A, Hvizdoš P , . Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012, 66(10): 793–796

DOI

14
Porwal H, Grasso  S, Reece M J . Review of graphene–ceramic matrix composites. Advances in Applied Ceramics, 2013, 112(8): 443–454

DOI

15
Centeno A, Rocha  V G, Alonso  B, . Graphene for tough and electroconductive alumina ceramics. Journal of the European Ceramic Society, 2013, 33(15–16): 3201–3210

DOI

16
Saboori A, Pavese  M, Badini C , . Acta Metallurgica Sinica (English Letters), 2017 (in press)

17
Nieto A, Lahiri  D, Agarwal A . Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering. Materials Science and Engineering A, 2013, 582(11): 338–346

DOI

18
Ramirez C, Miranzo  P, Belmonte M , . Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society, 2014, 34(2): 161–169

DOI

19
Fan Y, Estili  M, Igarashi G , . The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. Journal of the European Ceramic Society, 2014, 34(2): 443–451

DOI

20
Wang J, Li  Z, Fan G , . Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597

21
Chen L Y, Konishi  H, Fehrenbacher A , . Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 2012, 67(1): 29–32

DOI

22
Koltsova T, Nasibulina  L I, Anoshkin  I V, . New hybrid copper composite materials based on carbon nanostructures. Journal of Materials Science and Engineering B, 2012, 2(4): 240–246

23
Nasibulin A G ,  Koltsova T ,  Nasibulina L I , . A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 2013, 61(6): 1862–1871

DOI

24
Kim Y, Lee  J, Yeom M S , . Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4: 2114

DOI PMID

25
Hwang J, Yoon  T, Jin S H , . Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, 2013, 25(46): 6724–6729

DOI PMID

26
Kuang D, Xu  L, Liu L , . Graphene–nickel composites. Applied Surface Science, 2013, 273: 484–490

DOI

27
Rashad M, Pan  F, Tang A , . Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. Journal of Alloys and Compounds, 2014, 603(9): 111–118

DOI

28
Neubauer E, Kitzmantel  M, Hulman M , . Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology, 2010, 70(16): 2228–2236

DOI

29
Babu J S S ,  Prabhakaran Nair K ,  Unnikrishnan G , . Development of aluminum-based hybrid composites with graphite nanofibers/alumina short fibers: processing and characterization. Journal of Composite Materials, 2010, 44(16): 1929–1943

DOI

30
Liu J, Khan  U, Coleman J , . Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design, 2016, 94: 87–94

DOI

31
Mahesh V P, Nair  P S, Rajan  T P D, . Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid-metal stir-casting technique. Journal of Composite Materials, 2011, 45(23): 2371–2378

DOI

32
Rohatgi P K, Gupta  N, Alaraj S . Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique. Journal of Composite Materials, 2006, 40(13): 1163–1174

DOI

33
Motozuka S, Tagaya  M, Ikoma T , . Preparation of copper–graphite composite particles by milling process. Journal of Composite Materials, 2012, 46(22): 2829–2834

DOI

34
Singhal S K, Lal  M, Sharma I , . Fabrication of copper matrix composites reinforced with carbon nanotubes using a combination of molecular-level-mixing and high energy ball milling. Journal of Composite Materials, 2013, 47(5): 613–621

DOI

35
Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44(1): 552–559

DOI

36
Jagannadham K. Thermal conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43(2): 316–324

DOI

37
Rashad M, Pan  F, Tang A , . Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry, 2015, 23: 243–250

DOI

38
Saboori A, Novara  C, Pavese M , . An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. Journal of Materials Engineering and Performance, 2017, 26(3): 993–999

DOI

39
Zhou J, Wang  Q, Sun Q , . Ferromagnetism in semihydrogenated graphene sheet. Nano Letters, 2009, 9(11): 3867–3870

DOI PMID

40
Kwon H, Kawasaki  A. In: Attaf B , ed. Advances in Composite Materials for Medicine and Nanotechnology. InTech, 2011, 429–444

41
Jamaati R, Amirkhanlou  S, Toroghinejad M R , . Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. Journal of Materials Engineering and Performance, 2012, 21(7): 1249–1253

DOI

42
Kováčik J ,  Emmer Š . Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy, 2011, 49(6): 411–416

43
Chawla N, Shen  Y. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, 3(6): 357–370

DOI

44
Chu K, Jia  C. Enhanced strength in bulk graphene–copper composites. Physica Status Solidi A: Applications and Materials Science, 2014, 211(1): 184–190

DOI

45
Lee C, Wei  X, Kysar J W , . Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

DOI PMID

46
Dorfman S, Fuks  D. Carbon diffusion in copper-based metal matrix composites. Sensors and Actuators A: Physical, 1995, 51(1): 13–16

DOI

Outlines

/