Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization
Abdollah SABOORI , Matteo PAVESE , Claudio BADINI , Paolo FINO
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 171 -181.
Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization
Aluminum and copper matrix nanocomposites reinforced by graphene nanoplatelets (GNPs) were successfully fabricated by a wet mixing method followed by conventional powder metallurgy. The uniform dispersion of GNPs within the metal matrices showed that the wet mixing method has a great potential to be used as a mixing technique. However, by increasing the GNPs content, GNPs agglomeration was more visible. DSC and XRD of Al/GNPs nanocomposites showed that no new phase formed below the melting point of Al. Microstructural observations in both nanocomposites reveal the evident grain refinement effect as a consequence of GNPs addition. The interfacial bonding evaluation shows a poor interfacial bonding between GNPs and Al, while the interfacial bonding between Cu and GNPs is strong enough to improve the properties of the Cu/GNPs nanocomposites. In both composites, the coefficient of thermal expansion decreases as a function of GNPs while, their hardness is improved by increasing the GNPs content as well as their elastic modulus.
nanocomposite / aluminum / copper / graphene / microstructure / thermal expansion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |