Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization

Abdollah SABOORI , Matteo PAVESE , Claudio BADINI , Paolo FINO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 171 -181.

PDF (568KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 171 -181. DOI: 10.1007/s11706-017-0377-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization

Author information +
History +
PDF (568KB)

Abstract

Aluminum and copper matrix nanocomposites reinforced by graphene nanoplatelets (GNPs) were successfully fabricated by a wet mixing method followed by conventional powder metallurgy. The uniform dispersion of GNPs within the metal matrices showed that the wet mixing method has a great potential to be used as a mixing technique. However, by increasing the GNPs content, GNPs agglomeration was more visible. DSC and XRD of Al/GNPs nanocomposites showed that no new phase formed below the melting point of Al. Microstructural observations in both nanocomposites reveal the evident grain refinement effect as a consequence of GNPs addition. The interfacial bonding evaluation shows a poor interfacial bonding between GNPs and Al, while the interfacial bonding between Cu and GNPs is strong enough to improve the properties of the Cu/GNPs nanocomposites. In both composites, the coefficient of thermal expansion decreases as a function of GNPs while, their hardness is improved by increasing the GNPs content as well as their elastic modulus.

Keywords

nanocomposite / aluminum / copper / graphene / microstructure / thermal expansion

Cite this article

Download citation ▾
Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. Front. Mater. Sci., 2017, 11(2): 171-181 DOI:10.1007/s11706-017-0377-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geim A KNovoselov  K S. The rise of graphene. Nature Materials20076(3): 183–191

[2]

Castro Neto A H Guinea F Peres N M R . The electronic properties of graphene. Reviews of Modern Physics200981(1): 109–162

[3]

Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials201110(8): 569–581

[4]

Molitor FGüttinger  JStampfer C . Electronic properties of graphene nanostructures. Journal of Physics: Condensed Matter201123(24): 243201

[5]

Ovid’ko I A . Review on grain boundaries in graphene. Curved poly- and nanocrystalline graphene structures as new carbon allotropes. Reviews on Advanced Materials Science201230(3): 201–224

[6]

Rashad MPan  FYu Z . Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Progress in Natural Science: Materials International201525(5): 460–470

[7]

Rashad MPan  FHu H . Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering A2015630: 36–44

[8]

Rashad MPan  FTang A . Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International201424(2): 101–108

[9]

Kuilla TBhadra  SYao D . Recent advances in graphene based polymer composites. Progress in Polymer Science201035(11): 1350–1375

[10]

Potts J RDreyer  D RBielawski  C W. Graphene-based polymer nanocomposites. Polymer201152(1): 5–25

[11]

Tapasztó OTapasztó  LMarkó M . Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters2011511(4–6): 340–343

[12]

Walker L SMarotto  V RRafiee  M A. Toughening in graphene ceramic composites. ACS Nano20115(4): 3182–3190

[13]

Kvetková LDuszová  AHvizdoš P . Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia201266(10): 793–796

[14]

Porwal HGrasso  SReece M J . Review of graphene–ceramic matrix composites. Advances in Applied Ceramics2013112(8): 443–454

[15]

Centeno ARocha  V GAlonso  B. Graphene for tough and electroconductive alumina ceramics. Journal of the European Ceramic Society201333(15–16): 3201–3210

[16]

Saboori APavese  MBadini C Acta Metallurgica Sinica (English Letters)2017 (in press)

[17]

Nieto ALahiri  DAgarwal A . Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering. Materials Science and Engineering A2013582(11): 338–346

[18]

Ramirez CMiranzo  PBelmonte M . Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society201434(2): 161–169

[19]

Fan YEstili  MIgarashi G . The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. Journal of the European Ceramic Society201434(2): 443–451

[20]

Wang JLi  ZFan G . Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia201266(8): 594–597

[21]

Chen L YKonishi  HFehrenbacher A . Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia201267(1): 29–32

[22]

Koltsova TNasibulina  L IAnoshkin  I V. New hybrid copper composite materials based on carbon nanostructures. Journal of Materials Science and Engineering B20122(4): 240–246

[23]

Nasibulin A G Koltsova T Nasibulina L I . A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia201361(6): 1862–1871

[24]

Kim YLee  JYeom M S . Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications20134: 2114

[25]

Hwang JYoon  TJin S H . Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials201325(46): 6724–6729

[26]

Kuang DXu  LLiu L . Graphene–nickel composites. Applied Surface Science2013273: 484–490

[27]

Rashad MPan  FTang A . Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. Journal of Alloys and Compounds2014603(9): 111–118

[28]

Neubauer EKitzmantel  MHulman M . Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology201070(16): 2228–2236

[29]

Babu J S S Prabhakaran Nair K Unnikrishnan G . Development of aluminum-based hybrid composites with graphite nanofibers/alumina short fibers: processing and characterization. Journal of Composite Materials201044(16): 1929–1943

[30]

Liu JKhan  UColeman J . Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design201694: 87–94

[31]

Mahesh V PNair  P SRajan  T P D. Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid-metal stir-casting technique. Journal of Composite Materials201145(23): 2371–2378

[32]

Rohatgi P KGupta  NAlaraj S . Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique. Journal of Composite Materials200640(13): 1163–1174

[33]

Motozuka STagaya  MIkoma T . Preparation of copper–graphite composite particles by milling process. Journal of Composite Materials201246(22): 2829–2834

[34]

Singhal S KLal  MSharma I . Fabrication of copper matrix composites reinforced with carbon nanotubes using a combination of molecular-level-mixing and high energy ball milling. Journal of Composite Materials201347(5): 613–621

[35]

Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science201344(1): 552–559

[36]

Jagannadham K. Thermal conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science201243(2): 316–324

[37]

Rashad MPan  FTang A . Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry201523: 243–250

[38]

Saboori ANovara  CPavese M . An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. Journal of Materials Engineering and Performance201726(3): 993–999

[39]

Zhou JWang  QSun Q . Ferromagnetism in semihydrogenated graphene sheet. Nano Letters20099(11): 3867–3870

[40]

Kwon HKawasaki  A. In: Attaf B , ed. Advances in Composite Materials for Medicine and Nanotechnology. InTech, 2011, 429–444

[41]

Jamaati RAmirkhanlou  SToroghinejad M R . Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. Journal of Materials Engineering and Performance201221(7): 1249–1253

[42]

Kováčik J Emmer Š . Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy201149(6): 411–416

[43]

Chawla NShen  Y. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials20013(6): 357–370

[44]

Chu KJia  C. Enhanced strength in bulk graphene–copper composites. Physica Status Solidi A: Applications and Materials Science2014211(1): 184–190

[45]

Lee CWei  XKysar J W . Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008321(5887): 385–388

[46]

Dorfman SFuks  D. Carbon diffusion in copper-based metal matrix composites. Sensors and Actuators A: Physical199551(1): 13–16

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (568KB)

964

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/