Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization

Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO

PDF(568 KB)
PDF(568 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (2) : 171-181. DOI: 10.1007/s11706-017-0377-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization

Author information +
History +

Abstract

Aluminum and copper matrix nanocomposites reinforced by graphene nanoplatelets (GNPs) were successfully fabricated by a wet mixing method followed by conventional powder metallurgy. The uniform dispersion of GNPs within the metal matrices showed that the wet mixing method has a great potential to be used as a mixing technique. However, by increasing the GNPs content, GNPs agglomeration was more visible. DSC and XRD of Al/GNPs nanocomposites showed that no new phase formed below the melting point of Al. Microstructural observations in both nanocomposites reveal the evident grain refinement effect as a consequence of GNPs addition. The interfacial bonding evaluation shows a poor interfacial bonding between GNPs and Al, while the interfacial bonding between Cu and GNPs is strong enough to improve the properties of the Cu/GNPs nanocomposites. In both composites, the coefficient of thermal expansion decreases as a function of GNPs while, their hardness is improved by increasing the GNPs content as well as their elastic modulus.

Keywords

nanocomposite / aluminum / copper / graphene / microstructure / thermal expansion

Cite this article

Download citation ▾
Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. Front. Mater. Sci., 2017, 11(2): 171‒181 https://doi.org/10.1007/s11706-017-0377-9

References

[1]
Geim A K, Novoselov  K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef Pubmed Google scholar
[2]
Castro Neto A H ,  Guinea F ,  Peres N M R , . The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
CrossRef Google scholar
[3]
Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
CrossRef Pubmed Google scholar
[4]
Molitor F, Güttinger  J, Stampfer C , . Electronic properties of graphene nanostructures. Journal of Physics: Condensed Matter, 2011, 23(24): 243201
CrossRef Pubmed Google scholar
[5]
Ovid’ko I A . Review on grain boundaries in graphene. Curved poly- and nanocrystalline graphene structures as new carbon allotropes. Reviews on Advanced Materials Science, 2012, 30(3): 201–224
[6]
Rashad M, Pan  F, Yu Z , . Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Progress in Natural Science: Materials International, 2015, 25(5): 460–470
CrossRef Google scholar
[7]
Rashad M, Pan  F, Hu H , . Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering A, 2015, 630: 36–44
CrossRef Google scholar
[8]
Rashad M, Pan  F, Tang A , . Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, 2014, 24(2): 101–108
CrossRef Google scholar
[9]
Kuilla T, Bhadra  S, Yao D , . Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010, 35(11): 1350–1375
CrossRef Google scholar
[10]
Potts J R, Dreyer  D R, Bielawski  C W, . Graphene-based polymer nanocomposites. Polymer, 2011, 52(1): 5–25
CrossRef Google scholar
[11]
Tapasztó O, Tapasztó  L, Markó M , . Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 2011, 511(4–6): 340–343
CrossRef Google scholar
[12]
Walker L S, Marotto  V R, Rafiee  M A, . Toughening in graphene ceramic composites. ACS Nano, 2011, 5(4): 3182–3190
CrossRef Pubmed Google scholar
[13]
Kvetková L, Duszová  A, Hvizdoš P , . Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012, 66(10): 793–796
CrossRef Google scholar
[14]
Porwal H, Grasso  S, Reece M J . Review of graphene–ceramic matrix composites. Advances in Applied Ceramics, 2013, 112(8): 443–454
CrossRef Google scholar
[15]
Centeno A, Rocha  V G, Alonso  B, . Graphene for tough and electroconductive alumina ceramics. Journal of the European Ceramic Society, 2013, 33(15–16): 3201–3210
CrossRef Google scholar
[16]
Saboori A, Pavese  M, Badini C , . Acta Metallurgica Sinica (English Letters), 2017 (in press)
[17]
Nieto A, Lahiri  D, Agarwal A . Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering. Materials Science and Engineering A, 2013, 582(11): 338–346
CrossRef Google scholar
[18]
Ramirez C, Miranzo  P, Belmonte M , . Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society, 2014, 34(2): 161–169
CrossRef Google scholar
[19]
Fan Y, Estili  M, Igarashi G , . The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. Journal of the European Ceramic Society, 2014, 34(2): 443–451
CrossRef Google scholar
[20]
Wang J, Li  Z, Fan G , . Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597
[21]
Chen L Y, Konishi  H, Fehrenbacher A , . Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 2012, 67(1): 29–32
CrossRef Google scholar
[22]
Koltsova T, Nasibulina  L I, Anoshkin  I V, . New hybrid copper composite materials based on carbon nanostructures. Journal of Materials Science and Engineering B, 2012, 2(4): 240–246
[23]
Nasibulin A G ,  Koltsova T ,  Nasibulina L I , . A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 2013, 61(6): 1862–1871
CrossRef Google scholar
[24]
Kim Y, Lee  J, Yeom M S , . Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4: 2114
CrossRef Pubmed Google scholar
[25]
Hwang J, Yoon  T, Jin S H , . Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, 2013, 25(46): 6724–6729
CrossRef Pubmed Google scholar
[26]
Kuang D, Xu  L, Liu L , . Graphene–nickel composites. Applied Surface Science, 2013, 273: 484–490
CrossRef Google scholar
[27]
Rashad M, Pan  F, Tang A , . Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. Journal of Alloys and Compounds, 2014, 603(9): 111–118
CrossRef Google scholar
[28]
Neubauer E, Kitzmantel  M, Hulman M , . Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology, 2010, 70(16): 2228–2236
CrossRef Google scholar
[29]
Babu J S S ,  Prabhakaran Nair K ,  Unnikrishnan G , . Development of aluminum-based hybrid composites with graphite nanofibers/alumina short fibers: processing and characterization. Journal of Composite Materials, 2010, 44(16): 1929–1943
CrossRef Google scholar
[30]
Liu J, Khan  U, Coleman J , . Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design, 2016, 94: 87–94
CrossRef Google scholar
[31]
Mahesh V P, Nair  P S, Rajan  T P D, . Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid-metal stir-casting technique. Journal of Composite Materials, 2011, 45(23): 2371–2378
CrossRef Google scholar
[32]
Rohatgi P K, Gupta  N, Alaraj S . Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique. Journal of Composite Materials, 2006, 40(13): 1163–1174
CrossRef Google scholar
[33]
Motozuka S, Tagaya  M, Ikoma T , . Preparation of copper–graphite composite particles by milling process. Journal of Composite Materials, 2012, 46(22): 2829–2834
CrossRef Google scholar
[34]
Singhal S K, Lal  M, Sharma I , . Fabrication of copper matrix composites reinforced with carbon nanotubes using a combination of molecular-level-mixing and high energy ball milling. Journal of Composite Materials, 2013, 47(5): 613–621
CrossRef Google scholar
[35]
Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44(1): 552–559
CrossRef Google scholar
[36]
Jagannadham K. Thermal conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43(2): 316–324
CrossRef Google scholar
[37]
Rashad M, Pan  F, Tang A , . Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry, 2015, 23: 243–250
CrossRef Google scholar
[38]
Saboori A, Novara  C, Pavese M , . An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. Journal of Materials Engineering and Performance, 2017, 26(3): 993–999
CrossRef Google scholar
[39]
Zhou J, Wang  Q, Sun Q , . Ferromagnetism in semihydrogenated graphene sheet. Nano Letters, 2009, 9(11): 3867–3870
CrossRef Pubmed Google scholar
[40]
Kwon H, Kawasaki  A. In: Attaf B , ed. Advances in Composite Materials for Medicine and Nanotechnology. InTech, 2011, 429–444
[41]
Jamaati R, Amirkhanlou  S, Toroghinejad M R , . Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. Journal of Materials Engineering and Performance, 2012, 21(7): 1249–1253
CrossRef Google scholar
[42]
Kováčik J ,  Emmer Š . Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy, 2011, 49(6): 411–416
[43]
Chawla N, Shen  Y. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, 3(6): 357–370
CrossRef Google scholar
[44]
Chu K, Jia  C. Enhanced strength in bulk graphene–copper composites. Physica Status Solidi A: Applications and Materials Science, 2014, 211(1): 184–190
CrossRef Google scholar
[45]
Lee C, Wei  X, Kysar J W , . Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
CrossRef Pubmed Google scholar
[46]
Dorfman S, Fuks  D. Carbon diffusion in copper-based metal matrix composites. Sensors and Actuators A: Physical, 1995, 51(1): 13–16
CrossRef Google scholar

Disclosure of potential conflicts of interests

The authors declare that there is no conflict of interest.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(568 KB)

Accesses

Citations

Detail

Sections
Recommended

/