SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes
Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo
SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes
Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.
SnO2 / nanotubes / N-doped carbon / anode / Li-ion battery
[1] |
Li Y, Yang W, Liu H L,
CrossRef
Google scholar
|
[2] |
Yang X, Huang Y N, Wang M J,
CrossRef
Google scholar
|
[3] |
Wu Z P, Wang Y L, Liu X B,
CrossRef
Google scholar
|
[4] |
Wang J H, Zheng J D, Gao L P,
CrossRef
Google scholar
|
[5] |
Man J Z, Liu K, Du Y H,
CrossRef
Google scholar
|
[6] |
Liu R P, Zhang N, Wang X Y,
CrossRef
Google scholar
|
[7] |
Zhao Y, Yang L A, Ma C L . One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage.Frontiers of Materials Science, 2020, 14(2): 145–154
CrossRef
Google scholar
|
[8] |
Wang Z M, Zeng F M, Zhao S L,
CrossRef
Google scholar
|
[9] |
Varghese K, Baji D S, Nair S,
CrossRef
Google scholar
|
[10] |
Sun X L, Xie W H, Luo F . Nanoarchitectonics of multilayered NiO submicron flakes for ultrafast and stable lithium storage.Journal of Alloys and Compounds, 2023, 936: 168259
CrossRef
Google scholar
|
[11] |
Singh J, Lee S, Tomar A,
CrossRef
Google scholar
|
[12] |
Man J Z, Liu K, Du Y H,
CrossRef
Google scholar
|
[13] |
Zhang F L, Teng X L, Shi W K,
CrossRef
Google scholar
|
[14] |
Fang S, Bresser D, Passerini S . Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries.Advanced Energy Materials, 2020, 10(1): 1902485
CrossRef
Google scholar
|
[15] |
Yao W Q, Wu S B, Zhan L,
CrossRef
Google scholar
|
[16] |
Li J W, Yao W L, Zhang F C,
CrossRef
Google scholar
|
[17] |
Xu S, Yu W, Li W,
CrossRef
Google scholar
|
[18] |
Dai Q S, Gu C P, Xu Y Y,
CrossRef
Google scholar
|
[19] |
Wang J Y, Cui Y, Wang D . Design of hollow nanostructures for energy storage, conversion and production.Advanced Materials, 2019, 31(38): 1801993
CrossRef
Google scholar
|
[20] |
Luo J M, Sun Y G, Guo S J,
CrossRef
Google scholar
|
[21] |
Fan M N, Yang Z H, Lin Z H,
CrossRef
Google scholar
|
[22] |
Wei L, Yu Q T, Yang X Y,
CrossRef
Google scholar
|
[23] |
Wen Z Y, Gu C P, Yin Y J,
CrossRef
Google scholar
|
[24] |
Liu Y, Hu C, Chen L,
CrossRef
Google scholar
|
[25] |
Wang S F, Wang S Y, Wang G,
CrossRef
Google scholar
|
[26] |
Henriques A, Baboukani A R, Jafarizadeh B,
CrossRef
Google scholar
|
[27] |
Zhao H W, Zeng X L, Zheng T,
CrossRef
Google scholar
|
[28] |
Cheng Y Y, Xie H, Yu F L,
CrossRef
Google scholar
|
[29] |
Xi Y B, Yang D J, Lou H M,
CrossRef
Google scholar
|
[30] |
Liu D D, Wei Z Y, Liu L M,
CrossRef
Google scholar
|
[31] |
Xu Z X, Yue W B, Yuan X,
CrossRef
Google scholar
|
[32] |
Zhang H Y, Li L Q, Li Z P,
CrossRef
Google scholar
|
[33] |
Brijesh K, Vinayraj S, Dhanush P C,
CrossRef
Google scholar
|
[34] |
Raza A, Ghani F, Lim J C,
CrossRef
Google scholar
|
[35] |
Wang J, Fang F, Yuan T,
CrossRef
Google scholar
|
[36] |
Meng J K, Wang W W, Wang Q C,
CrossRef
Google scholar
|
[37] |
Yang D X, Ren H Y, Wu D P,
CrossRef
Google scholar
|
[38] |
Zhang J, Ren H, Wang J Y,
CrossRef
Google scholar
|
[39] |
Liang B R, Wang J J, Zhang S Y,
CrossRef
Google scholar
|
[40] |
Tian F H, Cheng Y Q, Zhang Y J,
CrossRef
Google scholar
|
[41] |
Li R, Miao C, Yu L M,
CrossRef
Google scholar
|
[42] |
Zhao Z P, Su H, Li S H,
CrossRef
Google scholar
|
[43] |
Liu X Q, Zhu S L, Liang Y Q,
CrossRef
Google scholar
|
[44] |
Li W R, Deng X Q, Feng Y F,
CrossRef
Google scholar
|
[45] |
Hong Y, Mao W F, Hu Q Q,
CrossRef
Google scholar
|
[46] |
Liu X G, Guo J M, Liu T,
CrossRef
Google scholar
|
[47] |
Wei W L, Du P C, Liu D,
CrossRef
Google scholar
|
[48] |
Hu Z Q, Xu X F, Wang X F,
CrossRef
Google scholar
|
[49] |
Wang Y, Guo W B, Yang Y Q,
CrossRef
Google scholar
|
[50] |
Seok D, Shin W H, Kang S W,
CrossRef
Google scholar
|
[51] |
Yang Z J, Qin X Y, Lin K,
CrossRef
Google scholar
|
/
〈 | 〉 |