Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage

Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang

PDF(5288 KB)
PDF(5288 KB)
Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (3) : 230654. DOI: 10.1007/s11706-023-0654-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage

Author information +
History +

Abstract

Nitrogen-doped carbon-coated hollow SnS2/NiS (SnS2/NiS@N–C) microflowers were obtained using NiSn(OH)6 nanospheres as the template via a solvent-thermal method followed by the polydopamine coating and carbonization process. When served as an anode material for lithium-ion batteries, such hollow SnS2/NiS@N–C microflowers exhibited a capacity of 403.5 mAh·g−1 at 2.0 A·g−1 over 200 cycles and good rate performance. The electrochemical reaction kinetics of this anode was analyzed, and the morphologies and structures of anode materials after the cycling test were characterized. The high stability and good rate performance were mainly due to bimetallic synergy, hollow micro/nanostructure, and nitrogen-doped carbon layers. The revealed excellent electrochemical energy storage properties of hollow SnS2/NiS@N–C microflowers in this study highlight their potential as the anode material.

Graphical abstract

Keywords

SnS2 / NiS / microflower / hollow structure / nitrogen-doped carbon / anode / lithium-ion battery

Cite this article

Download citation ▾
Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage. Front. Mater. Sci., 2023, 17(3): 230654 https://doi.org/10.1007/s11706-023-0654-8

References

[1]
Ding Y, Cai P, Wen Z . Electrochemical neutralization energy: from concept to devices.Chemical Society Reviews, 2021, 50(3): 1495–1511
CrossRef Google scholar
[2]
Pang Z Y, Zhang H Z, Wang L, . Towards safe lithium‒sulfur batteries from liquid-state electrolyte to solid-state electrolyte.Frontiers of Materials Science, 2023, 17(1): 230630
CrossRef Google scholar
[3]
Ma Z Y, Wang Q B, Wang Y H, . High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure.Frontiers of Materials Science, 2022, 16(4): 220624
CrossRef Google scholar
[4]
Zhou Y Y, Zhang Z Y, Zhang H Z, . Progress and perspective of vanadium-based cathode materials for lithium ion batteries.Tungsten, 2021, 3(3): 279–288
CrossRef Google scholar
[5]
Inamdar A I, Hou B, Chavan H S, . Copper cobalt tin sulphide (Cu2CoSnS4) anodes synthesised using a chemical route for stable and efficient rechargeable lithium-ion batteries.Dalton Transactions, 2022, 51(38): 14535–14544
CrossRef Google scholar
[6]
Wei X J, Zhang Y B, Zhang B K, . Yolk–shell-structured zinc‒cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage.Nano Energy, 2019, 64: 103899
CrossRef Google scholar
[7]
Yang X X, He C J, Hou Y L, . In-situ growth engineering of nano-sheets SnS2 on S-doped reduced graphene oxide for high lithium/sodium storage capacity.Journal of Electroanalytical Chemistry, 2022, 904: 115947
CrossRef Google scholar
[8]
Dong X, Deng Z P, Huo L H, . Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery.Journal of Alloys and Compounds, 2019, 788: 984–992
CrossRef Google scholar
[9]
Yu L Q, Zhao S X, Wu Q L, . Strengthening the interface between flower-like VS4 and porous carbon for improving its lithium storage performance.Advanced Functional Materials, 2020, 30(16): 2000427
CrossRef Google scholar
[10]
Zhao Z J, Chao Y G, Wang F, . Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage.Rare Metals, 2022, 41(4): 1245–1254
CrossRef Google scholar
[11]
Zhang S P, Wang G, Wang B B, . 3D carbon nanotube network bridged hetero-structured Ni–Fe–S nanocubes toward high-performance lithium, sodium, and potassium storage.Advanced Functional Materials, 2020, 30(24): 2001592
CrossRef Google scholar
[12]
Fang Y, Luan D, Gao S, . Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage.Angewandte Chemie International Edition, 2021, 60(37): 20102–20118
CrossRef Google scholar
[13]
Zhang Y, Wang P X, Yin Y Y, . Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode.Carbon, 2019, 150: 378–387
CrossRef Google scholar
[14]
Lin Y M, Qiu Z Z, Li D Z, . NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries.Energy Storage Materials, 2018, 11: 67–74
CrossRef Google scholar
[15]
Fang G Z, Wu Z X, Zhou J, . Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode.Advanced Energy Materials, 2018, 8(19): 1703155
CrossRef Google scholar
[16]
Wen Z Y, Gu C P, Yin Y J, . Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries.Applied Surface Science, 2021, 568: 150969
CrossRef Google scholar
[17]
Liu H, Lei W, Tong Z, . Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers.ACS Applied Materials & Interfaces, 2021, 13(21): 24604–24614
CrossRef Google scholar
[18]
Xue L, Li Y, Lin W, . Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries.Journal of Colloid and Interface Science, 2023, 638: 231–241
CrossRef Google scholar
[19]
Huang J R, Dai Q S, Wu Q A, . Preparation of hollow SnO2@N‒C nanospheres for high performance lithium-ion battery.Journal of Electroanalytical Chemistry, 2022, 922: 116741
CrossRef Google scholar
[20]
Zhang W L, Huang Z Y, Zhou H H, . Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material.Journal of Alloys and Compounds, 2020, 816: 152633
CrossRef Google scholar
[21]
Han X Y, Zhao D L, Meng W J, . Hollow tremella-like graphene sphere/SnO2 composite for high performance Li-ion battery anodes.Ceramics International, 2019, 45(13): 16244–16250
CrossRef Google scholar
[22]
Li W, Huang B, Liu Z, . NiS2 wrapped into graphene with strong Ni–O interaction for advanced sodium and potassium ion batteries.Electrochimica Acta, 2021, 369: 137704
CrossRef Google scholar
[23]
Ji Y L, Lu X M, Luo F Y, . Improved SnO2/C composite anode enabled by well-designed heterogeneous nanospheres decoration.Chemical Physics Letters, 2021, 763: 138242
CrossRef Google scholar
[24]
Chen F M, Chen Z L, Dai Z Y, . Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: a promising anode material for lithium-ion batteries.Journal of Alloys and Compounds, 2020, 816: 152495
CrossRef Google scholar
[25]
Guan S, Wang T, Fu X, . Coherent SnS2/NiS2 hetero-nanosheet arrays with fast charge transfer for enhanced sodium-ion storage.Applied Surface Science, 2020, 508: 145241
CrossRef Google scholar
[26]
Khan N A, Rashid N, Junaid M, . NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction.ACS Applied Energy Materials, 2019, 2(5): 3587–3594
CrossRef Google scholar
[27]
Xue L C, Chen F M, Zhang Z B, . Fast charge transfer kinetics enabled by carbon-coated, heterostructured SnO2/SnSx arrays for robust, flexible lithium-ion batteries.Chem Electro Chem, 2022, 9(2): e202101327
CrossRef Google scholar
[28]
Xue L, Li Y, Lin W, . Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries.Journal of Colloid and Interface Science, 2023, 638: 231–241
CrossRef Google scholar
[29]
Wang C P, Zhang Y Y, Li Y S, . Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries.Journal of Alloys and Compounds, 2020, 820: 153147
CrossRef Google scholar
[30]
Zhang R, Lu C X, Shi Z L, . Hexagonal phase NiS octahedrons co-modified by 0D-, 1D-, and 2D carbon materials for high performance supercapacitor.Electrochimica Acta, 2019, 311: 83–91
CrossRef Google scholar
[31]
Wang X, Li X, Li Q, . Improved electrochemical performance based on nanostructured SnS2@CoS2‒rGO composite anode for sodium-ion batteries.Nano-Micro Letters, 2018, 10(3): 46
CrossRef Google scholar
[32]
Zhang D L, Mou H Y, Lu F, . A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting.Applied Catalysis B: Environmental, 2019, 254: 471–478
CrossRef Google scholar
[33]
Li W L, Chen Z, Hou J M, . SnO2 nano-crystals anchored on N-doped porous carbon with enhanced lithium storage properties.Applied Surface Science, 2020, 515: 145902
CrossRef Google scholar
[34]
Xiang M, Li J, Feng S, . Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures.Journal of Colloid and Interface Science, 2022, 624: 471–481
CrossRef Google scholar
[35]
Li J J, Li X Y, Fan X, . Holey graphene anchoring of the monodispersed nano-sulfur with covalently-grafted polyaniline for lithium sulfur batteries.Carbon, 2022, 188: 155–165
CrossRef Google scholar
[36]
Ren Y J, Zhang G Q, Huo J H, . Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage.Journal of Alloys and Compounds, 2022, 902: 163730
CrossRef Google scholar
[37]
Feng S Q, Wang J F, Gao N S, . Heterogeneous interface of Ni–Mn composite Prussian blue analog-coated structure modulates the adsorption and conversion of polysulfides in lithium‒sulfur batteries.Electrochimica Acta, 2022, 433: 141218
CrossRef Google scholar
[38]
Deepalakshmi T, Nguyen T T, Kim N H, . Rational design of ultrathin 2D tin nickel selenide nanosheets for high-performance flexible supercapacitors.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24462–24476
CrossRef Google scholar
[39]
Dai H H, Zhao Y, Zhang Z, . Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability.Journal of Electroanalytical Chemistry, 2022, 921: 116671
CrossRef Google scholar
[40]
Yu X L, Chen C M, Li R X, . Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances.Journal of Alloys and Compounds, 2022, 896: 162784
CrossRef Google scholar
[41]
Li S, Zhao Z, Li C, . SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries.Nano-Micro Letters, 2019, 11(1): 14
CrossRef Google scholar
[42]
Zhang L S, Huang Y P, Zhang Y F, . Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage.Advanced Materials Interfaces, 2016, 3(2): 1500467–1500476
CrossRef Google scholar
[43]
Huang S J, Li H P, Xu G B, . Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries.Electrochimica Acta, 2020, 342: 136115
CrossRef Google scholar
[44]
Xiang M, Zhang H Y, Feng S Q, . Nitrogen-doped carbon–cobalt-modified MnO nanowires as cathodes for high-performance lithium sulfur batteries.Journal of Electroanalytical Chemistry, 2021, 900: 115721
CrossRef Google scholar
[45]
Pei Y R, Zhao M, Zhu Y P, . VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: an anode material for superior potassium storage.Nano Materials Science, 2022, 4(2): 104–112
CrossRef Google scholar
[46]
Han D D, Xiao N R, Liu B, . One-pot synthesis of core/shell structured NiS@onion-like carbon nanocapsule as a high-performance anode material for lithium-ion batteries.Materials Letters, 2017, 196: 119–122
CrossRef Google scholar
[47]
Li H, He Y Y, Dai Y X, . Bimetallic SnS2/NiS2@S‒rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries.Chemical Engineering Journal, 2022, 427: 131784
CrossRef Google scholar
[48]
Ou X, Cao L, Liang X, . Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability.ACS Nano, 2019, 13(3): 3666–3676
CrossRef Google scholar
[49]
Miao Y, Zhao X, Wang X, . Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries.Nano Research, 2020, 13(11): 3041–3047
CrossRef Google scholar
[50]
Jia Z Q, Cui Z H, Tan Y B, . Bimetal-organic frameworks derived ternary metal sulphide nanoparticles embedded in porous carbon spheres/carbon nanotubes as high-performance lithium storage materials.Chemical Engineering Journal, 2019, 370: 89–97
CrossRef Google scholar
[51]
Su L W, Zhou Z, Qin X, . CoCO3 submicrocube/graphene composites with high lithium storage capability.Nano Energy, 2013, 2(2): 276–282
CrossRef Google scholar
[52]
Yin L, Cheng R, Song Q, . Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries.Electrochimica Acta, 2019, 293: 408–418
CrossRef Google scholar
[53]
Deng W, Chen X, Liu Z, . Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries.Journal of Power Sources, 2015, 277: 131–138
CrossRef Google scholar
[54]
Liu S, Zhang X, Yan P, . Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries.ACS Nano, 2019, 13(8): 8854–8864
CrossRef Google scholar
[55]
Pan Q, Xie J, Liu S Y, . Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties.RSC Advances, 2013, 3(12): 3899–3906
CrossRef Google scholar
[56]
Li J, Xu X, Yu X, . Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries.ACS Applied Materials & Interfaces, 2020, 12(4): 4414–4422
CrossRef Google scholar
[57]
Peng H, Li R, Hu J, . Core‒shell Sn‒Ni‒Cu-alloy@carbon nanorods to array as three-dimensional anode by nano electrodeposition for high-performance lithium ion batteries.ACS Applied Materials & Interfaces, 2016, 8(19): 12221–12227
CrossRef Google scholar
[58]
Nguyen T L, Kim D S, Hur J, . Ni–Sn-based hybrid composite anodes for high-performance lithium-ion batteries.Electrochimica Acta, 2018, 278: 25–32
CrossRef Google scholar
[59]
Zhang Y, Wang P, Yin Y, . Heterostructured SnS‒ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries.Chemical Engineering Journal, 2019, 356: 1042–1051
CrossRef Google scholar
[60]
Xu C X, Manukyan K V, Adams R A, . One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries.Carbon, 2019, 142: 51–59
CrossRef Google scholar
[61]
Ding Y, Wang W W, Bi M F, . CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage.Electrochimica Acta, 2019, 313: 331–340
CrossRef Google scholar
[62]
Cao B K, Liu Z Q, Xu C Y, . High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries.Journal of Power Sources, 2019, 414: 233–241
CrossRef Google scholar

Acknowledgements

This study was funded by the National Research Foundation of Korea (Grant No. NRF-2019R1A5A8080290) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-073 and GXXT-2020-074).

Electronic supplementary information

Supplementary materials can be found in the online version at https://doi.org/10.1007/s11706-023-0654-8, which include Figs. S1‒S8 and Tables S1–S2.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5288 KB)

Accesses

Citations

Detail

Sections
Recommended

/