The development of metal hydrides using as concentrating solar thermal storage materials
Xuanhui QU, Yang LI, Ping LI, Qi WAN, Fuqiang ZHAI
The development of metal hydrides using as concentrating solar thermal storage materials
Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.
metal hydride / concentrating solar power / heat storage
[1] |
Azzopardi B, Emmott C, Urbina A,
|
[2] |
Stoddard L, Abiecunas J, O'Connell R. Economic, energy, and environmental benefits of concentrating solar power in California. Subcontract Report NREL/SR-550-39291, 2006,1–69
|
[3] |
Liu C, Li F, Ma L-P,
|
[20] |
Aydin D, Casey S, Riffat S. The latest advancements on thermochemical heat storage systems. Renewable & Sustainable Energy Reviews, 2015, 41: 356–367
|
[21] |
Pardo P, Deydier A, Anxionnaz-Minvielle Z,
|
[22] |
Yu N, Wang R, Wang L. Sorption thermal storage for solar energy. Progress in Energy and Combustion Science, 2013, 39(5): 489–514
|
[23] |
Mette B, Kerskes H, Drück H,
|
[47] |
Zhou D, Zhao C, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 2012, 92: 593–605
|
[48] |
Cárdenas B, León N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable & Sustainable Energy Reviews, 2013, 27: 724–737
|
[7] |
Libowitz G. Metal hydrides for thermal energy storage. In: The 9th Intersociety Energy Conversion Engineering Conference, 1974, 1: 322–325
|
[8] |
Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140
|
[9] |
Williams M. CRC Handbook of Chemistry and Physics. CRC Press, 2014
|
[10] |
Zaluska A, Zaluski L, Ström-Olsen J O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, 288(1–2): 217–225
|
[11] |
Zaluski L, Zaluska A, Ström-Olsen J. Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis. Journal of Alloys and Compounds, 1999, 290(1–2): 71–78
|
[12] |
Wan Q, Li P, Li Z,
|
[13] |
Wan Q, Li P, Li Z,
|
[14] |
Li P, Li Z, Zhai F,
|
[15] |
Li Z, Li P, Wan Q,
|
[16] |
Li P, Wan Q, Li Z,
|
[17] |
Zhai F, Li P, Sun A,
|
[18] |
Murthy S S, Kumar E A. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”. Applied Thermal Engineering, 2014, 72(2): 176–189
|
[19] |
Corgnale C, Hardy B, Motyka T,
|
[24] |
Wierse M, Werner R, Groll M. Magnesium hydride for thermal energy storage in a small-scale solar-thermal power station. Journal of the Less Common Metals, 1991, 172–174: 1111–1121
|
[25] |
Reiser A, Bogdanović B, Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems. International Journal of Hydrogen Energy, 2000, 25(5): 425–430
|
[26] |
Bogdanović B, Hofmann H, Neuy A,
|
[27] |
Terzieva M, Khrussanova M, Peshev P. Hydriding and dehydriding characterisitics of Mg–LaNi5 composite materials prepared by mechanical alloying. Journal of Alloys and Compounds, 1998, 267: 235–239
|
[28] |
Vijay R, Sundaresan R, Maiya M P,
|
[29] |
Shao H, Xin G, Zheng J,
|
[30] |
Bogdanović B, Ritter A, Spliethoff B. Active MgH2–Mg systems for reversible chemical energy storage. Angewandte Chemie International Edition in English, 1990, 29(3): 223–234
|
[31] |
Ritschel M, Uhlemann M, Gutfleisch O,
|
[32] |
Bacsa R, Laurent C, Morishima R,
|
[33] |
Saita I, Toshima T, Tanda S,
|
[34] |
House S, Liu X, Rockett A,
|
[35] |
Guo L, Jiao L, Li L,
|
[36] |
Suh M P, Park H J, Prasad T K,
|
[37] |
Jeon K J, Moon H R, Ruminski A M,
|
[38] |
Huot J, Boily S, Akiba E,
|
[39] |
Gennari F C, Castro F J, Gamboa J A. Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties. Journal of Alloys and Compounds, 2002, 339(1–2): 261–267
|
[40] |
Felderhoff M, Bogdanović B. High temperature metal hydrides as heat storage materials for solar and related applications. International Journal of Molecular Sciences, 2009, 10(1): 325–344
|
[41] |
Bogdanović B, Reiser A, Schlichte K,
|
[42] |
Felderhoff M, Urbanczyk R, Peil S. Thermochemical heat storage for high temperature applications – a review. Green, 2013, 3(2): 113–123
|
[43] |
Kuznetsov V. Eleventh conference on energy conversion and research on thermoelectronic emission in the USA. Atomic Energy, 1977, 42(5): 485–487
|
[44] |
Harries D. A novel thermochemical energy storage technology. In: Proceedings of the EcoGeneration Conference, Sydney, Australia, 2010
|
[45] |
Agyenim F, Hewitt N, Eames P,
|
[46] |
Fan L, Khodadadi J. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable & Sustainable Energy Reviews, 2011, 15(1): 24–46
|
[49] |
Olszewski M, Siman-Tov M. Development of encapsulated lithium hydride thermal energy storage. Energy Conversion Engineering Conference, IECEC-89. In: Proceedings of the 24th Intersociety, IEEE, 1989, 2903–2919
|
[50] |
Bennett C. Persistent Monitoring Platforms Final Report. Livermore, CA: Lawrence Livermore National Laboratory (LLNL), 2007
|
[51] |
Friedlmeier G, Wierse M, Groll M. Titanium hydride for high-temperature thermal energy storage in solar-thermal power stations. Zeitschriftfür Physikalische Chemie, 1994, 183(1–2): 175–183
|
[52] |
Qu H, Du J, Pu C,
|
[53] |
Cao G, Peng Y, Liu N,
|
[54] |
Kundin J, Kumar R, Schlieter A,
|
[55] |
Cao G, Liu N, Peng J,
|
[56] |
Song G, Han J, Kim T,
|
[57] |
Lu X, Zou X, Li C,
|
[58] |
Pettan G, Afonso C, Spinelli J. Microstructure development and mechanical properties of rapidly solidified Ti–Fe and Ti–Fe–Bi alloys. Materials & Design, 2015, 86: 221–229
|
[59] |
Panigrahi M, Shibata E, Iizuka A,
|
[60] |
Ruetzler K, Kovaci B, Güloglu E,
|
[61] |
Medoro G, Manaresi N. Method and apparatus for the manipulation of particles in conductive solutions. US Patent, 8 349 160, 2013-1-8
|
[62] |
Imam S M, Azmy A M. Sizing and economic analysis of stand-alone PEM fuel cell systems for residential utilization. International Review of Applied Sciences and Engineering, 2015, 6(1): 1–10
|
[63] |
Ono S, Nomura K, Ikeda Y. The reaction of hydrogen with alloys of vanadium and titanium. Journal of the Less Common Metals, 1980, 72(2): 159–165
|
[64] |
Yartys V A, Lototsky M V. An overview of hydrogen storage methods. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Netherlands: Springer, 2005, 75–104
|
[65] |
Dornheim M. Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. INTECH Open Access Publisher, 2011
|
[66] |
Yang Y, Luo D, Guo W,
|
[67] |
Verbetsky V, Zotov T, Movlaev E. Absorption of hydrogen by V–Mo and V–Mo–Ti alloys. Inorganic Materials: Applied Research, 2014, 5(1): 70–74
|
[68] |
Verbetsky V, Lushnikov S, Movlaev E. Interaction of vanadium alloys with hydrogen at high pressures. Inorganic Materials, 2015, 51(8): 779–782
|
[69] |
Sheppard D, Paskevicius M, Buckley C. Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chemistry of Materials, 2011, 23(19): 4298–4300
|
[70] |
Sheppard D, Corgnale C, Hardy B,
|
[71] |
Amama P B, Spowart J E, Voevodin A A,
|
[72] |
Placious B, Patrick J, Timothy S. Modified metal hydrides for high-capacity thermal energy storage. International Symposium and Exhibition − Emerging Opportunities: Materials and Process Solutions, 2012
|
[73] |
Alapati S V, Johnson J K, Sholl D S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. Journal of Physical Chemistry B, 2006, 110(17): 8769–8776
|
[74] |
Alapati S, Johnson J, Sholl D. Predicting reaction equilibria for destabilized metal hydride decomposition reactions for reversible hydrogen storage. Journal of Physical Chemistry C, 2007, 111(4): 1584–1591
|
[75] |
Kawamura M, Ono S, Higano S. Experimental studies on the behaviours of hydride heat storage system. Energy Conversion and Management, 1982, 22(2): 95–102
|
[76] |
Kawamura M, Ono S, Mizuno Y. Dynamic characteristics of a hydride heat storage system. Journal of the Less Common Metals, 1983, 89(2): 365–372
|
[77] |
Nishizaki T, Miyamoto K, Yoshida K. Coefficients of performance of hydride heat pumps. Journal of the Less Common Metals, 1983, 89(2): 559–566
|
[78] |
Yonezu I, Nasako K, Honda N,
|
[79] |
Meng X Y, Bao Z W, Yang F S,
|
[80] |
Bogdanović B, Bohmhammel K, Christ B,
|
[81] |
Ward P A, Corgnale C, Teprovich J Jr,
|
[82] |
Gruen D, McBeth R, Mendelsohn M,
|
[83] |
Snape E, Huston E, Sandrock G. Development of solar-hydrogen systems using metal hydrides. Alternative Energy Sources II, 1981, 8: 3569–3586
|
[4] |
Anevi G, Jansson L, Lewis D. Dynamics of hydride heat pumps. Journal of the Less Common Metals, 1984, 104(2): 341–348
|
[5] |
Nagel M, Komazaki Y, Uchida M,
|
[6] |
Ron M. A hydrogen heat pump as a bus air conditioner. Journal of the Less Common Metals, 1984, 104(2): 259–278
|
[84] |
Klein H, Groll M. Development of a two-stage metal hydride system as topping cycle in cascading sorption systems for cold generation. Applied Thermal Engineering, 2002, 22(6): 631–639
|
[85] |
Park J, Han S, Jang H,
|
[86] |
Bogdanović B, Spliethoff B, Ritter A. The magnesium hydride system for heat storage and cooling. Zeitschrift für Physikalische Chemie, 1989, 164(1–2): 1497–1508
|
[87] |
Bogdanović B, Ritter A, Spliethoff B,
|
[88] |
Steiner D. Development of a solar cooking/cooling unit with a thermochemical energy store based on metal hydrides. Fuel and Energy Abstracts, 1997, 38(3): 166
|
[89] |
Sekhar B S, Muthukumar P, Saikia R. Tests on a metal hydride based thermal energy storage system. International Journal of Hydrogen Energy, 2012, 37(4): 3818–3824
|
[90] |
Liu Z. Investigation on the thermal storage properties of RE–Mg material and design of thermal reactors. Dissertation for the Master Degree. Beijing: University of Science and Technology Beijing, 2015, 1
|
[91] |
Harries D, Paskevicius M, Sheppard D,
|
[92] |
Ronnebro E, Whyatt G, Powell M. Reversible metal hydride thermal energy storage systems, devices, and process for high temperature applications. US Patent Application Ser. No. 14/189,942, 2014-2-25
|
/
〈 | 〉 |