Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte

Yu XIA , Liang MA , Hui LU , Xian-Ping WANG , Yun-Xia GAO , Wang LIU , Zong ZHUANG , Li-Jun GUO , Qian-Feng FANG

Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 366 -372.

PDF (688KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 366 -372. DOI: 10.1007/s11706-015-0308-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte

Author information +
History +
PDF (688KB)

Abstract

Garnet-like Li6.8La3Zr1.8Bi0.2O12 (LLZBO) + x mol.% Al2O3 (x = 0, 1.25, 2.50) lithium ionic electrolytes were prepared by conventional solid state reaction method under two different sintering temperatures of 1000°C and 1100°C. XPS, induced coupled plasma optical emission spectrometer (ICP-OES), XRD and AC impedance spectroscopy were applied to investigate the bismuth valance, lithium concentration, phase structure and lithium ionic conductivity, respectively. Electrical measurement demonstrated that ionic conductivity of Al-added LLZBO compounds could be obviously improved when the sample sintering temperature increased from 1000°C to 1100°C. The highest ionic conductivity 6.3×10−5 S/cm was obtained in the LLZBO−1.25%Al sample sintered at 1100°C, in consistent with the lowest activation energy 0.45 eV for the lithium ion migration. The mechanism related with good ionic conductivity in the Al-added LLZBO sample was attributed to the lattice distortion induced by the partial Al substitution at Zr sites, which is helpful to improve the migration ability of Li ions in lattice.

Keywords

garnet lithium electrolyte / cubic Li7La3Zr2O12 / AC impedance / ionic conductivity / activation energy

Cite this article

Download citation ▾
Yu XIA, Liang MA, Hui LU, Xian-Ping WANG, Yun-Xia GAO, Wang LIU, Zong ZHUANG, Li-Jun GUO, Qian-Feng FANG. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte. Front. Mater. Sci., 2015, 9(4): 366-372 DOI:10.1007/s11706-015-0308-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thangadurai VNarayanan SPinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews201443(13): 4714–4727

[2]

Zhu JXu ZLu B G. Ultrafine nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy20147: 114–123

[3]

Zhu JChen L BXu Z Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy201512: 339–346

[4]

Thangadurai VWeppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12Journal of Solid State Chemistry2006179(4): 974–984

[5]

Murugan RThangadurai VWeppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12Angewandte Chemie International Edition200746(41): 7778–7781

[6]

Thangadurai VKaack HWeppner W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta). Journal of the American Ceramic Society200386(3): 437–440

[7]

Awaka JKijima NHayakawa H Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry2009182(8): 2046–2052

[8]

Rangasamy EWolfenstine JSakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12Solid State Ionics2012206: 28–32

[9]

Hubaud A ASchroeder D JKey B Low temperature stabilization of cubic (Li7−xAlx/3)La3Zr2O12: role of aluminum during formation. Journal of Materials Chemistry A: Materials for Energy and Sustainability20131(31): 8813–8818

[10]

Wang X PXia YHu J Phase transition and conductivity improvement of tetragonal fast lithium ionic electrolyte Li7La3Zr2O12Solid State Ionics2013253: 137–142

[11]

Lee J MKim TBaek S W High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction. Solid State Ionics2014258: 13–17

[12]

Ahn J HPark S YLee J M Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12Journal of Power Sources2014254: 287–292

[13]

Düvel AKuhn ARobben L Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. Journal of Physical Chemistry C2012116(29): 15192–15202

[14]

Raskovalov A AIl’ina E AAntonov B D. Structure and transport properties of Li7La3Zr2−0.75xAlxO12 superionic solid electrolytes. Journal of Power Sources2013238: 48–52

[15]

He L XYoo H I. Effect of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M=Al, Cr). Electrochimica Acta200348(10): 1357–1366

[16]

Kulkarni G UVijayakrishnan VRao G R State of bismuth in BaBiO3 and BaBi1−xPbxO3: Bi 4f photoemission and Bi L3 absorption spectroscopic studies. Applied Physics Letters199057(17): 1823–1824

[17]

Xie HAlonso J ALi T Lithium distribution in aluminum-free cubic Li7La3Zr2O12Chemistry of Materials201123(16): 3587–3589

[18]

Boukamp B AEquivalent Circuit, Users Manual. 2nd ed. The Netherlands: University of Twente, 1989, 1

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (688KB)

1360

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/