Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method

R. ELILARASSI(), G. CHANDRASEKARAN

PDF(197 KB)
PDF(197 KB)
Front. Mater. Sci. ›› 2013, Vol. 7 ›› Issue (2) : 196-201. DOI: 10.1007/s11706-013-0198-4
COMMUNICATION
COMMUNICATION

Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method

  • R. ELILARASSI(), G. CHANDRASEKARAN
Author information +
History +

Abstract

Nanocrystalline Zn1-xCuxO (x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.

Keywords

Cu-doped ZnO / auto-combustion / luminescence / electron paramagnetic resonance (EPR)

Cite this article

Download citation ▾
R. ELILARASSI, G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Front Mater Sci, 2013, 7(2): 196‒201 https://doi.org/10.1007/s11706-013-0198-4

References

[1] Norris D J, Yao N, Charnock F T, . High-quality manganese-doped ZnSe nanocrystals. Nano Letters , 2001, 1(1): 3-7
[2] Zhang Q X, Yu K, Bai W, . Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters , 2007, 61(18): 3890-3892
[3] Lieber C M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications , 1998, 107(11): 607-616
[4] Ryu Y, Lee T-S, Lubguban J A, . Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters , 2006, 88(24): 241108 (3 pages)
[5] Law M, Greene L E, Johnson J C, . Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459
[6] Sima M, Enculescu I, Sima M, . ZnO:Mn:Cu nanowires prepared by template method. physica status solidi (b) , 2007, 244(5): 1522-1527
[7] Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B , 2006, 110(43): 21412-21415
[8] Park Y R, Choi S L, Lee J H, . Ferromagnetic properties of Ni-doped rutile TiO2-δ. Journal of the Korean Physical Society , 2007, 50(3): 638-642
[9] LiuC, Yun F, Morko? H. Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science: Materials in Electronics , 2005, 16(9) 555-597
[10] Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(7): 075206 (6 pages)
[11] Bhargava R N, Chhabra V, Som T, . Quantum confined atoms of doped ZnO nanocrystals. physica status solidi (b) , 2002, 229(2): 897-901
[12] Chakraborti D, Ramachandran S, Trichy G, . Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics , 2007, 101(5): 053918 (7 pages)
[13] Ni Y H, Cao X F, Wu G G, . Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology , 2007, 18(15): 155603 (4 pages)
[14] Jimenez-Gonzalez A E. Modification of ZnO thin films by Ni, Cu, and Cd doping. Journal of Solid State Chemistry , 1997, 128(2): 176-180
[15] Lee H-J, Kim B-S, Cho C R, . A study of magnetic and optical properties of Cu-doped ZnO. physica status solidi (b) , 2004, 241(7): 1533-1536
[16] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32: 751-767
[17] Wang H, Wang H B, Yang F J, . Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method. Nanotechnology , 2006, 17(17): 4312-4316
[18] Li C, Fang G, Fu Q, . Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth , 2006, 292(1): 19-25
[19] Sun Y, Ndifor-Angwafor N G, Riley D J, . Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters , 2006, 431(4-6): 352-357
[20] Ryu Y R, Zhu S, Budai J D, . Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics , 2000, 88(1): 201-204
[21] Chen Y, Hong K, Ko H J, . Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates. Applied Physics Letters , 2000, 76(2): 245-247
[22] Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications , 2004, 132(3-4): 269-271
[23] Vanheusden K, Warren W L, Seager C H, . Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics , 1996, 79(10): 7983-7990
[24] Korsunska N O, Borkovska L V, Bulakh B M, . The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence , 2003, 102-103: 733-736
[25] Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B , 1998, 102(16): 2854-2862
[26] Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters , 2002, 81(4): 757-759
[27] Xu C X, Sun X W, Zhang X H, . Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology , 2004, 15(7): 856-861
[28] Vlasenko L. Point defects in ZnO: Electron paramagnetic resonance study. Physica B: Condensed Matter , 2009, 404(23-24): 4774-4778
[29] Liu W K, Whitaker K M, Smith A L, . Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Physical Review Letters , 2007, 98(18): 186804 (4 pages)
[30] Kannappan R, Mahalakshmy R, Rajendiran T M, . Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol. Journal of Chemical Sciences , 2003, 115(1): 1-14
[31] Viswanatha R, Chakraborty S, Basu S, . Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B , 2006, 110(45): 22310-22312
AI Summary AI Mindmap
PDF(197 KB)

Accesses

Citations

Detail

Sections
Recommended

/