[1] Ozin G A, Manners I, Fournier-Bidoz S,
. Dream nanomachines.
Advanced Materials , 2005, 17(24): 3011–3018
10.1002/adma.200501767[2] Mirkovic T, Zacharia N S, Scholes G D,
. Nanolocomotion- catalytic nanomotors and nanorotors.
Small , 2010, 6(2): 159–167
10.1002/smll.200901340[3] Mirkovic T, Zacharia N S, Scholes G D,
. Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria.
ACS Nano , 2010, 4(4): 1782–1789
10.1021/nn100669h[4] Paxton W F, Sen A, Mallouk T E. Motility of catalytic nanoparticles through self-generated forces.
Chemistry- a European Journal , 2005, 11(22): 6462–6470
[5] Paxton W F, Sundararajan S, Mallouk T E,
. Chemical locomotion.
Angewandte Chemie , 2006, 45(33): 5420–5429
10.1002/anie.200600060[6] Wang J. Can man-made nanomachines compete with nature biomotors?
ACS Nano , 2009, 3(1): 4–9
10.1021/nn800829k[7] Wang J, Manesh K M. Motion control at the nanoscale.
Small , 2010, 6(3): 338–345
10.1002/smll.200901746[8] Schliwa M, Woehlke G. Molecular motors.
Nature , 2003, 422(6933): 759–765
10.1038/nature01601[9] Gajewski E, Steckler D K, Goldberg R N. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate.
The Journal of Biological Chemistry , 1986, 261(27): 12733–12737
[10] Alberts B, Johnson A, Lewis J,
. Molecular Biology of the Cell.
4th ed.
New York:
Garland Science, 2002
[11] Kron S J, Spudich J A. Fluorescent actin filaments move on myosin fixed to a glass surface.
Proceedings of the National Academy of Sciences of the United States of America , 1986, 83(17): 6272–6276
10.1073/pnas.83.17.6272[12] Browne W R, Feringa B L. Making molecular machines work.
Nature Nanotechnology , 2006, 1(1): 25–35
10.1038/nnano.2006.45[13] Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines.
Angewandte Chemie , 2007, 46(1-2): 72–191
10.1002/ange.200504313[14] Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies.
Chemical Reviews , 2005, 105(4): 1377–1400
10.1021/cr030071r[15] Cameron L A, Footer M J, van Oudenaarden A,
. Motility of ActA protein-coated microspheres driven by actin polymerization.
Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4908–4913
10.1073/pnas.96.9.4908[16] Soong R K, Bachand G D, Neves H P,
. Powering an inorganic nanodevice with a biomolecular motor.
Science , 2000, 290(5496): 1555–1558
10.1126/science.290.5496.1555[17] Mano N, Heller A. Bioelectrochemical propulsion.
Journal of the American Chemical Society , 2005, 127(33): 11574–11575
10.1021/ja053937e[18] Sanchez S, Solovev A A, Mei Y,
. Dynamics of biocatalytic microengines mediated by variable friction control.
Journal of the American Chemical Society , 2010, 132(38): 13144–13145
10.1021/ja104362r[19] Pantarotto D, Browne W R, Feringa B L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.
Chemical Communications , 2008, (13): 1533–1535
10.1039/b715310d[20] Ebbens S J, Howse J R. In pursuit of propulsion at the nanoscale.
Soft Matter , 2010, 6(4): 726–738
10.1039/b918598d[21] Nicewarner-Pena S R, Freeman R G, Reiss B D,
. Submicrometer metallic barcodes.
Science , 2001, 294(5540): 137–141
10.1126/science.294.5540.137[22] Paxton W F, Kistler K C, Olmeda C C,
. Catalytic nanomotors: autonomous movement of striped nanorods.
Journal of the American Chemical Society , 2004, 126(41): 13424–13431
10.1021/ja047697z[23] Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors.
ACS Nano , 2008, 2(5): 1069–1075
10.1021/nn800154g[24] Qin L D, Banholzer M J, Xu X,
. Rational design and synthesis of catalytically driven nanorotors.
Journal of the American Chemical Society , 2007, 129(48): 14870–14871
10.1021/ja0772391[25] Manesh K M, Cardona M, Yuan R,
. Template-assisted fabrication of salt-independent catalytic tubular microengines.
ACS Nano , 2010, 4(4): 1799–1804
10.1021/nn1000468[26] Catchmark J M, Subramanian S, Sen A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions.
Small , 2005, 1(2): 202–206
10.1002/smll.200400061[27] Kline T R, Paxton W F, Mallouk T E,
. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods.
Angewandte Chemie , 2005, 44(5): 744–746
10.1002/anie.200461890[28] Love J C, Gates B D, Wolfe D B,
. Fabrication and wetting properties of metallic half-shells with submicron diameters.
Nano Letters , 2002, 2(8): 891–894
10.1021/nl025633l[29] Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro- and nano-swimmers.
New Journal of Physics , 2007, 9: 126 (9 pages)
[30] Howse J R, Jones R A, Ryan A J,
. Self-motile colloidal particles: from directed propulsion to random walk.
Physical Review Letters , 2007, 99(4): 048102 (4 pages)
[31] Gibbs J G, Zhao Y P. Autonomously motile catalytic nanomotors by bubble propulsion.
Applied Physics Letters , 2009, 94(16): 163104 (3 pages)
[32] Wheat P M, Marine N A, Moran J L,
. Rapid fabrication of bimetallic spherical motors.
Langmuir , 2010, 26(16): 13052–13055
10.1021/la102218w[33] Gibbs J G, Fragnito N A, Zhao Y P. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth.
Applied Physics Letters , 2010, 97: 253107 (3 pages)
[34] Wang Y, Fei S T, Byun Y M,
. Dynamic interactions between fast microscale rotors.
Journal of the American Chemical Society , 2009, 131(29): 9926–9927
10.1021/ja904827j[35] Solovev A A, Mei Y, Bermúdez Ure?a E,
. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.
Small , 2009, 5(14): 1688–1692
10.1002/smll.200900021[36] Robbie K, Brett M J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications.
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 1997, 15(3): 1460–1465
10.1116/1.580562[37] Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films.
Nature , 1996, 384(6610): 616
10.1038/384616a0[38] Zhao Y P, Ye D X, Wang P I,
. Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates.
International Journal of Nanoscience , 2002, 1(1): 87–97
10.1142/S0219581X02000073[39] Zhao Y P, Ye D X, Wang G C,
. Novel nano-column and nano-flower arrays by glancing angle deposition.
Nano Letters , 2002, 2(4): 351–354
10.1021/nl0157041[40] He Y P, Wu J S, Zhao Y P. Designing catalytic nanomotors by dynamic shadowing growth.
Nano Letters , 2007, 7(5): 1369–1375
10.1021/nl070461j[41] Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors.
Small , 2009, 5(20): 2304–2308
10.1002/smll.200900686[42] Ismagilov R F, Schwartz A, Bowden N,
. Autonomous movement and self-assembly.
Angewandte Chemie , 2002, 114(4): 674–676
10.1002/1521-3757(20020215)114:4<674::AID-ANGE674>3.0.CO;2-Z[43] Mirkovic T, Foo M L, Arsenault A C,
. Hinged nanorods made using a chemical approach to flexible nanostructures.
Nature Nanotechnology , 2007, 2(9): 565–569
10.1038/nnano.2007.250[44] Sundararajan S, Lammert P E, Zudans A W,
. Catalytic motors for transport of colloidal cargo.
Nano Letters , 2008, 8(5): 1271–1276
10.1021/nl072275j[45] Valadares L F, Tao Y G, Zacharia N S,
. Catalytic nanomotors: self-propelled sphere dimers.
Small , 2010, 6(4): 565–572
10.1002/smll.200901976[46] Ebbens S, Jones R A L, Ryan A J,
. Self-assembled autonomous runners and tumblers.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 82(2): 015304 (4 pages)
[47] Gibbs J G, Zhao Y P. Self-organized multiconstituent catalytic nanomotors.
Small , 2010, 6(15): 1656–1662
10.1002/smll.201000415[48] Wang Y, Hernandez R M, Bartlett D J Jr,
. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.
Langmuir , 2006, 22(25): 10451–10456
10.1021/la0615950[49] Golestanian R, Liverpool T B, Ajdari A. Propulsion of a molecular machine by asymmetric distribution of reaction products.
Physical Review Letters , 2005, 94(22): 220801 (4 pages)
[50] Moran J L, Wheat P M, Posner J D. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 81(6): 065302 (4 pages)
[51] Kline T R, Paxton W F, Wang Y,
. Catalytic micropumps: microscopic convective fluid flow and pattern formation.
Journal of the American Chemical Society , 2005, 127(49): 17150–17151
10.1021/ja056069u[52] Burdick J, Laocharoensuk R, Wheat P M,
. Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo.
Journal of the American Chemical Society , 2008, 130(26): 8164–8165
10.1021/ja803529u[53] Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers.
Nano Letters , 2009, 9(6): 2243–2245
10.1021/nl900186w[54] Gao W, Sattayasamitsathit S, Manesh K M,
. Magnetically powered flexible metal nanowire motors.
Journal of the American Chemical Society , 2010, 132(41): 14403–14405
10.1021/ja1072349[55] Balasubramanian S, Kagan D, Manesh K M,
. Thermal modulation of nanomotor movement.
Small , 2009, 5(13): 1569–1574
10.1002/smll.200900023[56] Demirok U K, Laocharoensuk R, Manesh K M,
. Ultrafast catalytic alloy nanomotors.
Angewandte Chemie , 2008, 120(48): 9489–9491
10.1002/ange.200803841[57] Wu J, Balasubramanian S, Kagan D,
. Motion-based DNA detection using catalytic nanomotors.
Nature Communications , 2010, 1: 36
10.1038/ncomms1035