Catalytic nanomotors: fabrication, mechanism, and applications

John GIBBS(), Yiping ZHAO

PDF(930 KB)
PDF(930 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (1) : 25-39. DOI: 10.1007/s11706-011-0120-x
REVIEW ARTICLE
REVIEW ARTICLE

Catalytic nanomotors: fabrication, mechanism, and applications

  • John GIBBS(), Yiping ZHAO
Author information +
History +

Abstract

Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electropho-resis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.

Keywords

nanomotors / catalysis / glancing angle deposition (GLAD) / bubble propulsion / self-electrophoresis

Cite this article

Download citation ▾
John GIBBS, Yiping ZHAO. Catalytic nanomotors: fabrication, mechanism, and applications. Front Mater Sci, 2011, 5(1): 25‒39 https://doi.org/10.1007/s11706-011-0120-x

References

[1] Ozin G A, Manners I, Fournier-Bidoz S, . Dream nanomachines. Advanced Materials , 2005, 17(24): 3011–3018 10.1002/adma.200501767
[2] Mirkovic T, Zacharia N S, Scholes G D, . Nanolocomotion- catalytic nanomotors and nanorotors. Small , 2010, 6(2): 159–167 10.1002/smll.200901340
[3] Mirkovic T, Zacharia N S, Scholes G D, . Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano , 2010, 4(4): 1782–1789 10.1021/nn100669h
[4] Paxton W F, Sen A, Mallouk T E. Motility of catalytic nanoparticles through self-generated forces. Chemistry- a European Journal , 2005, 11(22): 6462–6470
[5] Paxton W F, Sundararajan S, Mallouk T E, . Chemical locomotion. Angewandte Chemie , 2006, 45(33): 5420–5429 10.1002/anie.200600060
[6] Wang J. Can man-made nanomachines compete with nature biomotors? ACS Nano , 2009, 3(1): 4–9 10.1021/nn800829k
[7] Wang J, Manesh K M. Motion control at the nanoscale. Small , 2010, 6(3): 338–345 10.1002/smll.200901746
[8] Schliwa M, Woehlke G. Molecular motors. Nature , 2003, 422(6933): 759–765 10.1038/nature01601
[9] Gajewski E, Steckler D K, Goldberg R N. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate. The Journal of Biological Chemistry , 1986, 261(27): 12733–12737
[10] Alberts B, Johnson A, Lewis J, . Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002
[11] Kron S J, Spudich J A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America , 1986, 83(17): 6272–6276 10.1073/pnas.83.17.6272
[12] Browne W R, Feringa B L. Making molecular machines work. Nature Nanotechnology , 2006, 1(1): 25–35 10.1038/nnano.2006.45
[13] Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines. Angewandte Chemie , 2007, 46(1-2): 72–191 10.1002/ange.200504313
[14] Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chemical Reviews , 2005, 105(4): 1377–1400 10.1021/cr030071r
[15] Cameron L A, Footer M J, van Oudenaarden A, . Motility of ActA protein-coated microspheres driven by actin polymerization. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4908–4913 10.1073/pnas.96.9.4908
[16] Soong R K, Bachand G D, Neves H P, . Powering an inorganic nanodevice with a biomolecular motor. Science , 2000, 290(5496): 1555–1558 10.1126/science.290.5496.1555
[17] Mano N, Heller A. Bioelectrochemical propulsion. Journal of the American Chemical Society , 2005, 127(33): 11574–11575 10.1021/ja053937e
[18] Sanchez S, Solovev A A, Mei Y, . Dynamics of biocatalytic microengines mediated by variable friction control. Journal of the American Chemical Society , 2010, 132(38): 13144–13145 10.1021/ja104362r
[19] Pantarotto D, Browne W R, Feringa B L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chemical Communications , 2008, (13): 1533–1535 10.1039/b715310d
[20] Ebbens S J, Howse J R. In pursuit of propulsion at the nanoscale. Soft Matter , 2010, 6(4): 726–738 10.1039/b918598d
[21] Nicewarner-Pena S R, Freeman R G, Reiss B D, . Submicrometer metallic barcodes. Science , 2001, 294(5540): 137–141 10.1126/science.294.5540.137
[22] Paxton W F, Kistler K C, Olmeda C C, . Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society , 2004, 126(41): 13424–13431 10.1021/ja047697z
[23] Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano , 2008, 2(5): 1069–1075 10.1021/nn800154g
[24] Qin L D, Banholzer M J, Xu X, . Rational design and synthesis of catalytically driven nanorotors. Journal of the American Chemical Society , 2007, 129(48): 14870–14871 10.1021/ja0772391
[25] Manesh K M, Cardona M, Yuan R, . Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano , 2010, 4(4): 1799–1804 10.1021/nn1000468
[26] Catchmark J M, Subramanian S, Sen A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small , 2005, 1(2): 202–206 10.1002/smll.200400061
[27] Kline T R, Paxton W F, Mallouk T E, . Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie , 2005, 44(5): 744–746 10.1002/anie.200461890
[28] Love J C, Gates B D, Wolfe D B, . Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Letters , 2002, 2(8): 891–894 10.1021/nl025633l
[29] Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro- and nano-swimmers. New Journal of Physics , 2007, 9: 126 (9 pages)
[30] Howse J R, Jones R A, Ryan A J, . Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters , 2007, 99(4): 048102 (4 pages)
[31] Gibbs J G, Zhao Y P. Autonomously motile catalytic nanomotors by bubble propulsion. Applied Physics Letters , 2009, 94(16): 163104 (3 pages)
[32] Wheat P M, Marine N A, Moran J L, . Rapid fabrication of bimetallic spherical motors. Langmuir , 2010, 26(16): 13052–13055 10.1021/la102218w
[33] Gibbs J G, Fragnito N A, Zhao Y P. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Applied Physics Letters , 2010, 97: 253107 (3 pages)
[34] Wang Y, Fei S T, Byun Y M, . Dynamic interactions between fast microscale rotors. Journal of the American Chemical Society , 2009, 131(29): 9926–9927 10.1021/ja904827j
[35] Solovev A A, Mei Y, Bermúdez Ure?a E, . Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small , 2009, 5(14): 1688–1692 10.1002/smll.200900021
[36] Robbie K, Brett M J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 1997, 15(3): 1460–1465 10.1116/1.580562
[37] Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature , 1996, 384(6610): 61610.1038/384616a0
[38] Zhao Y P, Ye D X, Wang P I, . Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates. International Journal of Nanoscience , 2002, 1(1): 87–97 10.1142/S0219581X02000073
[39] Zhao Y P, Ye D X, Wang G C, . Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Letters , 2002, 2(4): 351–354 10.1021/nl0157041
[40] He Y P, Wu J S, Zhao Y P. Designing catalytic nanomotors by dynamic shadowing growth. Nano Letters , 2007, 7(5): 1369–1375 10.1021/nl070461j
[41] Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors. Small , 2009, 5(20): 2304–2308 10.1002/smll.200900686
[42] Ismagilov R F, Schwartz A, Bowden N, . Autonomous movement and self-assembly. Angewandte Chemie , 2002, 114(4): 674–676 10.1002/1521-3757(20020215)114:4<674::AID-ANGE674>3.0.CO;2-Z
[43] Mirkovic T, Foo M L, Arsenault A C, . Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotechnology , 2007, 2(9): 565–569 10.1038/nnano.2007.250
[44] Sundararajan S, Lammert P E, Zudans A W, . Catalytic motors for transport of colloidal cargo. Nano Letters , 2008, 8(5): 1271–1276 10.1021/nl072275j
[45] Valadares L F, Tao Y G, Zacharia N S, . Catalytic nanomotors: self-propelled sphere dimers. Small , 2010, 6(4): 565–572 10.1002/smll.200901976
[46] Ebbens S, Jones R A L, Ryan A J, . Self-assembled autonomous runners and tumblers. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 82(2): 015304 (4 pages)
[47] Gibbs J G, Zhao Y P. Self-organized multiconstituent catalytic nanomotors. Small , 2010, 6(15): 1656–1662 10.1002/smll.201000415
[48] Wang Y, Hernandez R M, Bartlett D J Jr, . Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir , 2006, 22(25): 10451–10456 10.1021/la0615950
[49] Golestanian R, Liverpool T B, Ajdari A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Physical Review Letters , 2005, 94(22): 220801 (4 pages)
[50] Moran J L, Wheat P M, Posner J D. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 81(6): 065302 (4 pages)
[51] Kline T R, Paxton W F, Wang Y, . Catalytic micropumps: microscopic convective fluid flow and pattern formation. Journal of the American Chemical Society , 2005, 127(49): 17150–17151 10.1021/ja056069u
[52] Burdick J, Laocharoensuk R, Wheat P M, . Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. Journal of the American Chemical Society , 2008, 130(26): 8164–8165 10.1021/ja803529u
[53] Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters , 2009, 9(6): 2243–2245 10.1021/nl900186w
[54] Gao W, Sattayasamitsathit S, Manesh K M, . Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society , 2010, 132(41): 14403–14405 10.1021/ja1072349
[55] Balasubramanian S, Kagan D, Manesh K M, . Thermal modulation of nanomotor movement. Small , 2009, 5(13): 1569–1574 10.1002/smll.200900023
[56] Demirok U K, Laocharoensuk R, Manesh K M, . Ultrafast catalytic alloy nanomotors. Angewandte Chemie , 2008, 120(48): 9489–9491 10.1002/ange.200803841
[57] Wu J, Balasubramanian S, Kagan D, . Motion-based DNA detection using catalytic nanomotors. Nature Communications , 2010, 1: 3610.1038/ncomms1035
AI Summary AI Mindmap
PDF(930 KB)

Accesses

Citations

Detail

Sections
Recommended

/