Shaped gold and silver nanoparticles

Yugang SUN1(), Changhua AN2

PDF(1343 KB)
PDF(1343 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (1) : 1-24. DOI: 10.1007/s11706-011-0100-1
REVIEW ARTICLE
REVIEW ARTICLE

Shaped gold and silver nanoparticles

  • Yugang SUN1(), Changhua AN2
Author information +
History +

Abstract

Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

Keywords

shaped nanoparticles / geometric symmetry / internal crystalline structure / multiple twins / gold / silver

Cite this article

Download citation ▾
Yugang SUN, Changhua AN. Shaped gold and silver nanoparticles. Front Mater Sci, 2011, 5(1): 1‒24 https://doi.org/10.1007/s11706-011-0100-1

References

[1] Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition , 2005, 44(48): 7852–7872 10.1002/anie.200500766
[2] Lopez-Acevedo O, Kacprzak K A, Akola J, . Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry , 2010, 2(4): 329–334 10.1038/nchem.589
[3] Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials , 2001, 13(10): 3196–3210 10.1021/cm010165m
[4] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science , 2006, 311(5758): 189–193 10.1126/science.1114849
[5] Maier S A, Brongersma M L, Kik P G, . Plasmonics - a route to nanoscale optical devices. Advanced Materials , 2001, 13(19): 1501–1505 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
[6] Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B , 2002, 106(32): 7729–7744 10.1021/jp0209289
[7] Murray C B, Sun S, Doyle H, . Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin , 2001, 26(12): 985–991
[8] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science , 1997, 275(5303): 1102–1106 10.1126/science.275.5303.1102
[9] Dick, L A, McFarland A D, Haynes C L, . Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B , 2001, 106(4): 853–860 10.1021/jp013638l
[10] Li J F, Huang Y F, Ding Y, . Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature , 2010, 464(7287): 392–395 10.1038/nature08907
[11] Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine , 2009, 7(2): 75–91
[12] Giljohann D A, Seferos D S, Daniel L, . Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition , 2010, 49(19): 3280–3294
[13] Brown C L, Bushell G, Whitehouse M W, . Nanogold-pharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin , 2007, 40(3): 245–250
[14] Xu R, Wang D, Zhang J, . Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry - An Asian Journal , 2006, 1(6): 888–893 10.1002/asia.200600260
[15] Tian N, Zhou Z, Sun S, . Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science , 2007, 316(5825): 732–735 10.1126/science.1140484
[16] Kelly K L, Coronado E, Zhao L L, . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B , 2002, 107(3): 668–677 10.1021/jp026731y
[17] Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials , 2006, 16(9): 1209–1214 10.1002/adfm.200600066
[18] Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials , 2005, 17(4): 412–415 10.1002/adma.200401086
[19] Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition , 2007, 46(12): 2036–2038 10.1002/anie.200604637
[20] Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics , 2005, 123(11): 114713 (9 pages)
[21] Liang H, Wang W, Huang Y, . Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C , 2010, 114(16): 7427–7431 10.1021/jp9105713
[22] Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst , 2003, 128(6): 686–691 10.1039/b212437h
[23] Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews , 2006, 35(3): 209–217 10.1039/b514191e
[24] Xia Y, Xiong Y, Lim B, . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition , 2009, 48(1): 60–103 10.1002/anie.200802248
[25] Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small , 2008, 4(3): 310–325 10.1002/smll.200701295
[26] Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials , 2010, 22(16): 1781–1804 10.1002/adma.200901271
[27] Grzelczak M, Pérez-Juste J, Mulvaney P, . Shape control in gold nanoparticle synthesis. Chemical Society Reviews , 2008, 37(9): 1783–1791 10.1039/b711490g
[28] Millstone J E, Hurst S J, Metraux G S, . Colloidal gold and silver triangular nanoprisms. Small , 2009, 5(6): 646–664 10.1002/smll.200801480
[29] Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics , 2004, 120(1): 357–366 10.1063/1.1629280
[30] Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence , 2004, 14(4): 331–341 10.1023/B:JOFL.0000031815.71450.74
[31] Jain P K, Lee K S, El-Sayed I H, . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B , 2006, 110(14): 7238–7248 10.1021/jp057170o
[32] Huang X, El-Sayed I H, Qian W, . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society , 2006, 128(6): 2115–2120 10.1021/ja057254a
[33] Ding H, Yong K-T, Roy I, . Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C , 2007, 111(34): 12552–12557 10.1021/jp0733419
[34] Oyelere A K, Chen P C, Huang X, . Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry , 2007, 18(5): 1490–1497 10.1021/bc070132i
[35] Oldenburg A L, Hansen M N, Zweifel D A, . Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express , 2006, 14(15): 6724–6738 10.1364/OE.14.006724
[36] Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials , 2009, 21(48): 4880–4910 10.1002/adma.200802789
[37] Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society , 2005, 127(20): 7632–7637 10.1021/ja042192u
[38] Qin P, Linder M, Brinck T, . High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials , 2009, 21(29): 2993–2996 10.1002/adma.200802461
[39] Kelzenberg M D, Boettcher S W, Petykiewicz J A, . Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials , 2010, 9(3): 239–244
[40] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials , 2010, 9(3): 205–213 10.1038/nmat2629
[41] Kulkarni A P, Noone K M, Munechika K, . Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters , 2010, 10(4): 1501–1505 10.1021/nl100615e
[42] Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B , 2000, 104(26): 6095–6098 10.1021/jp001435b
[43] Sanders A W, Routenberg D A, Wiley B J, . Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters , 2006, 6(8): 1822–1826 10.1021/nl052471v
[44] Knight M W, Grady N K, Bardhan R, . Nanoparticle-mediated coupling of light into a nanowire. Nano Letters , 2007, 7(8): 2346–2350 10.1021/nl071001t
[45] Guo X, Qiu M, Bao J, . Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters , 2009, 9(12): 4515–4519 10.1021/nl902860d
[46] Akimov A V, Mukherjee A, Yu C L, . Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature , 2007, 450(7168): 402–406 10.1038/nature06230
[47] Noginov M A, Zhu G, Mayy M, . Stimulated emission of surface plasmon polaritons. Physical Review Letters , 2008, 101(22): 226806 (4 pages)
[48] Yan R, Pausauskie P, Huang J, . Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(50): 21045–21050 10.1073/pnas.0902064106
[49] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science , 2002, 298(5601): 2176–2179 10.1126/science.1077229
[50] Zhang Q, Cobley C, Au L, . Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces , 2009, 1(9): 2044–2048 10.1021/am900400a
[51] Zeng J, Zheng Y, Rycenga M, . Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society , 2010, 132(25): 8552–8553 10.1021/ja103655f
[52] Kim F, Connor S, Song H, . Platonic gold nanocrystals. Angewandte Chemie International Edition , 2004, 43(28): 3673–3677 10.1002/anie.200454216
[53] Kundu S, Maheshwari V, Niu S, . Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology , 2008, 19(6): 065604 (5 pages)
[54] Huang C-J, Wang Y-H, Chiu P-H, . Electrochemical synthesis of gold nanocubes. Materials Letters , 2006, 60(15): 1896–1900 10.1016/j.matlet.2005.12.045
[55] Zhang Q, Huang C Z, Ling J, . Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B , 2008, 112(51): 16990–16994 10.1021/jp8081535
[56] Zhu J J, Kan C X, Zhu X G G, . Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research , 2007, 22(6): 1479–1485 10.1557/jmr.2007.0222
[57] Habas S E, Lee H, Radmilovic V, . Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials , 2007, 6(9): 692–697 10.1038/nmat1957
[58] Fan F R, Liu D Y, Wu Y F, . Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society , 2008, 130(22): 6949–6951 10.1021/ja801566d
[59] Li C C, Shuford K L, Chen M H, . A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano , 2008, 2(9): 1760–1769 10.1021/nn800264q
[60] Li C C, Shuford K L, Park Q H, . High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition , 2007, 46(18): 3264–3268 10.1002/anie.200604167
[61] Song S, Liu R, Zhang Y, . Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry - A European Journal , 2010, 16(21): 6251–6256 10.1002/chem.200903279
[62] Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society , 2006, 128(46): 14863–14870 10.1021/ja062892u
[63] Zhou J, An J, Tang B, . Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir , 2008, 24(18): 10407–10413 10.1021/la800961j
[64] Tsuji M, Ogino M, Matsuo R, . Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design , 2010, 10(1): 296–301 10.1021/cg9009042
[65] Zheng X L, Zhao X J, Guo D W, . Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir , 2009, 25(6): 3802–3807 10.1021/la803814j
[66] Zhang W, Liu Y, Cao R, . Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society , 2008, 130(46): 15581–15588 10.1021/ja805606q
[67] Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials , 2008, 20(16): 5186–5190 10.1021/cm800926u
[68] Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, . Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials , 2007, 17(9): 1443–1450 10.1002/adfm.200601071
[69] Murphy C J, Gole A M, Hunyadi S E, . One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry , 2006, 45(19): 7544–7554 10.1021/ic0519382
[70] Murphy C J, Sau T K, Gole A M, . Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B , 2005, 109(29): 13857–13870 10.1021/jp0516846
[71] Tao A, Kim F, Hess C, . Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters , 2003, 3(9): 1229–1233 10.1021/nl0344209
[72] Sun Y, Mayers B, Herricks T, . Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters , 2003, 3(7): 955–960 10.1021/nl034312m
[73] Sun Y, Gates B, Mayers B, . Crystalline silver nanowires by soft solution processing. Nano Letters , 2002, 2(2): 165–168 10.1021/nl010093y
[74] Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication , 2008, 10(7): 1027–1030 10.1016/j.elecom.2008.03.015
[75] N’Gom M, Ringnalda J, Mansfield J F, . Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters , 2008, 8(10): 3200–3204 10.1021/nl801504v
[76] Tang X, Tsuji M, Jiang P, . Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 338(1-3): 33–39 10.1016/j.colsurfa.2008.12.029
[77] Wiley B J, Wang Z, Wei J, . Synthesis and electrical characterization of silver nanobeams. Nano Letters , 2006, 6(10): 2273–2278 10.1021/nl061705n
[78] Xue C, Metraux G S, Millstone J E, . Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society , 2008, 130(26): 8337–8344 10.1021/ja8005258
[79] Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters , 2002, 2(9): 1003–1007 10.1021/nl025674h
[80] Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B , 2002, 106(42): 10777–10781 10.1021/jp026376b
[81] Jin R C, Cao Y W, Mirkin C A, . Photoinduced conversion of silver nanospheres to nanoprisms. Science , 2001, 294(5548): 1901–1903 10.1126/science.1066541
[82] Washio I, Xiong Y, Yin Y, . Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials , 2006, 18(13): 1745–1749 10.1002/adma.200600675
[83] Xiong Y, Washio I, Chen J, . Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir , 2006, 22(20): 8563–8570 10.1021/la061323x
[84] Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir , 2008, 24(18): 10437–10442 10.1021/la801803z
[85] Xiong Y J, Siekkinen A R, Wang J G, . Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry , 2007, 17(25): 2600–2602 10.1039/b705253g
[86] Cao Z W, Fu H B, Kang L T, . Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry , 2008, 18(23): 2673–2678 10.1039/b800691a
[87] Zhao N, Wei Y, Sun N, . Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir , 2008, 24(3): 991–998 10.1021/la702848x
[88] Li L, Wang Z, Huang T, . Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir , 2010, 26(14): 12330–12335 10.1021/la1015737
[89] Bai J, Qin Y, Jiang C, . Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials , 2007, 19(14): 3367–3369 10.1021/cm0707861
[90] Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C , 2008, 112(10): 3460–3463 10.1021/jp7117967
[91] Im S H, Lee Y T, Wiley B, . Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition , 2005, 44(14): 2154–2157 10.1002/anie.200462208
[92] Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition , 2006, 45(28): 4597–4601 10.1002/anie.200601277
[93] Wiley B, Herricks T, Sun Y, . Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters , 2004, 4(9): 1733–1739 10.1021/nl048912c
[94] Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society , 2004, 126(41): 13200–13201 10.1021/ja046037r
[95] Skrabalak S E, Au L, Li X, . Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols , 2007, 2(9): 2182–2190 10.1038/nprot.2007.326
[96] Siekkinen A R, McLellan J M, . Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters , 2006, 432(4-6): 491–496 10.1016/j.cplett.2006.10.095
[97] Wiley B J, Chen Y C, McLellan J M, . Synthesis and optical properties of silver nanobars and nanorice. Nano Letters , 2007, 7(4): 1032–1036 10.1021/nl070214f
[98] Mulvihill M J, Ling X Y, Henzie J, . Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. Journal of the American Chemical Society , 2009, 132(1): 268–274 10.1021/ja906954f
[99] Wu X, Redmond P L, Liu H, . Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society , 2008, 130(29): 9500–9506 10.1021/ja8018669
[100] Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography , 1962, 15: 916–918 10.1107/S0365110X6200239X
[101] Zhang Q, Xie J, Yang J, . Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano , 2009, 3(1): 139–148 10.1021/nn800531q
[102] Peng S, McMahon J M, Schatz G C, . Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(33): 14530–14534 10.1073/pnas.1007524107
[103] Xu J, Li S, Weng J, . Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials , 2008, 18(2): 277–284 10.1002/adfm.200700123
[104] Lu X, Tuan H-Y, Korgel B A, . Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry - A European Journal , 2008, 14(5): 1584–1591 10.1002/chem.200701570
[105] Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry - A European Journal , 2009, 15(47): 13181–13187 10.1002/chem.200901440
[106] Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, . Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials , 2006, 18(19): 2529–2534 10.1002/adma.200600475
[107] Gao Y, Jiang P, Song L, . Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth , 2006, 289(1): 376–380 10.1016/j.jcrysgro.2005.11.123
[108] Zheng X, Xu W, Corredor C, . Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C , 2007, 111(41): 14962–14967 10.1021/jp074583b
[109] Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society , 2010, 132(6): 1825–1827 10.1021/ja910010b
[110] Gao Y, Jiang P, Liu D F, . Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B , 2004, 108(34): 12877–12881 10.1021/jp037116c
[111] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications , 2001, (7): 617–618 10.1039/b100521i
[112] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials , 2002, 14(1): 80–82 10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
[113] Lucas M, Leach A M, McDowell M T, . Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B , 2008, 77(24): 245420 (4 pages)
[114] Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir , 2005, 21(8): 3334–3337 10.1021/la046807c
[115] Zhang S, Jiang Z, Xie Z, . Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B , 2005, 109(19): 9416–9421 10.1021/jp0441036
[116] Kim S H, Choi B S, Kang K, . Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds , 2007, 433(1-2): 261–264 10.1016/j.jallcom.2006.06.053
[117] Zheng X, Zhu L, Yan A, . Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science , 2003, 268(2): 357–361 10.1016/j.jcis.2003.09.021
[118] Zhou G, Lu M, Yang Z, . Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth , 2006, 289(1): 255–259 10.1016/j.jcrysgro.2005.11.106
[119] Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano , 2009, 3(1): 21–26 10.1021/nn800591y
[120] Seo D, Yoo C I, Jung J, . Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society , 2008, 130(10): 2940–2941 10.1021/ja711093j
[121] Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process. Advacned Materials , 2002, 14(11): 833–837 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
[122] Sun Y, Yin Y, Mayers B T, . Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials , 2002, 14(11): 4736–4745 10.1021/cm020587b
[123] Jin R, Charles Cao Y, Hao E, . Controlling anisotropic nanoparticle growth through plasmon excitation. Nature , 2003, 425(6957): 487–490 10.1038/nature02020
[124] An J, Tang B: Ning X, . Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C , 2007, 111(49): 18055–18059 10.1021/jp0745081
[125] Zhang Q, Ge J, Pham T, . Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition , 2009, 48(19): 3516–3519 10.1002/anie.200900545
[126] Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials , 2002, 14(15): 1084–1086 10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L
[127] Yener D O, Sindel J, Randall C A, . Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir , 2002, 18(22): 8692–8699 10.1021/la011229a
[128] Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters , 2002, 2(8): 903–905 10.1021/nl025638i
[129] Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials , 2009, 19(5): 679–688 10.1002/adfm.200801566
[130] Malikova N, Pastoriza-Santos I, Schierhorn M, . Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir , 2002, 18(9): 3694–3697 10.1021/la025563y
[131] Millstone J E, Park S, Shuford K L, . Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society , 2005, 127(15): 5312–5313 10.1021/ja043245a
[132] Shankar S S, Rai A, Ahmad A, . Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials , 2005, 17(3): 566–572 10.1021/cm048292g
[133] Tsuji M, Hashimoto M, Nishizawa Y, . Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal , 2005, 11(2): 440–452 10.1002/chem.200400417
[134] Li C, Cai W, Li Y, . Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B , 2006, 110(4): 1546–1552 10.1021/jp055522l
[135] Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters , 2003, 3(5): 675–679 10.1021/nl034140t
[136] Zhang J, Liu H, Wang Z, . Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters , 2007, 91(13): 133112 (3 pages)
[137] Zheng H, Smith R K, Jun Y-W, . Observation of single colloidal platinum nanocrystal growth trajectories. Science , 2009, 324(5932): 1309–1312 10.1126/science.1172104
[138] Abécassis B, Testard F, Spalla O, . Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Letters , 2007, 7(6): 1723–1727 10.1021/nl0707149
[139] Polte J, Erler R, Thunemann A F, . Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano , 2010, 4(2): 1076–1082 10.1021/nn901499c
[140] Chen C-H, Sarma L S, Chen J-M, . Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano , 2007, 1(2): 114–125 10.1021/nn700021x
[141] Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir , 2009, 25(11): 6049–6061 10.1021/la900550t
[142] Cheong S, Watt J, Ingham B, . In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society , 2009, 131(40): 14590–14595 10.1021/ja9065688
[143] Middelkoop V, Boldrin P, Peel M, . Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials , 2009, 21(12): 2430–2435 10.1021/cm900118z
[144] Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition , 2009, 48(26): 4788–4791 10.1002/anie.200901048
[145] Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials , 2009, 21(35): 3572–3575 10.1002/adma.200803431
[146] Park S Y, Lytton-Jean A K R, Lee B, . DNA-programmable nanoparticle crystallization. Nature , 2008, 451(7178): 553–556 10.1038/nature06508
[147] Shevchenko E V, Talapin D V, Kotov N A, . Structural diversity in binary nanoparticle superlattices. Nature , 2006, 439(7072): 55–59 10.1038/nature04414
[148] Li W Y, Camargo P H C, Au L, . Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition , 2010, 49(1): 164–168
[149] Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology , 2007, 2(7): 435–440 10.1038/nnano.2007.189
[150] Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano , 2009, 3(8): 2129–2138 10.1021/nn9005895
[151] Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition , 2009, 48(50): 9484–9488 10.1002/anie.200904118
[152] Brousseau III L C, Novak J P, Marinakos S M, . Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Advanced Materials , 1999, 11(6): 447–449 10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO;2-I
[153] Nykypanchuk D, Maye M M, van der Lelie D, . DNA-guided crystallization of colloidal nanoparticles. Nature , 2008, 451(7178): 549–552 10.1038/nature06560
AI Summary AI Mindmap
PDF(1343 KB)

Accesses

Citations

Detail

Sections
Recommended

/