[1] Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
Angewandte Chemie International Edition , 2005, 44(48): 7852–7872
10.1002/anie.200500766[2] Lopez-Acevedo O, Kacprzak K A, Akola J,
. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters.
Nature Chemistry , 2010, 2(4): 329–334
10.1038/nchem.589[3] Fendler J H. Chemical self-assembly for electronic applications.
Chemistry of Materials , 2001, 13(10): 3196–3210
10.1021/cm010165m[4] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions.
Science , 2006, 311(5758): 189–193
10.1126/science.1114849[5] Maier S A, Brongersma M L, Kik P G,
. Plasmonics - a route to nanoscale optical devices.
Advanced Materials , 2001, 13(19): 1501–1505
10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z[6] Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles.
The Journal of Physical Chemistry B , 2002, 106(32): 7729–7744
10.1021/jp0209289[7] Murray C B, Sun S, Doyle H,
. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices.
MRS Bulletin , 2001, 26(12): 985–991
[8] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.
Science , 1997, 275(5303): 1102–1106
10.1126/science.275.5303.1102[9] Dick, L A, McFarland A D, Haynes C L,
. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss.
The Journal of Physical Chemistry B , 2001, 106(4): 853–860
10.1021/jp013638l[10] Li J F, Huang Y F, Ding Y,
. Shell-isolated nanoparticle-enhanced Raman spectroscopy.
Nature , 2010, 464(7287): 392–395
10.1038/nature08907[11] Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives.
Journal of Applied Biomedicine , 2009, 7(2): 75–91
[12] Giljohann D A, Seferos D S, Daniel L,
. Gold nanoparticles for biology and medicine.
Angewandte Chemie International Edition , 2010, 49(19): 3280–3294
[13] Brown C L, Bushell G, Whitehouse M W,
. Nanogold-pharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in
Swarna bhasma, a microparticulate used in traditional Indian medicine.
Gold Bulletin , 2007, 40(3): 245–250
[14] Xu R, Wang D, Zhang J,
. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene.
Chemistry - An Asian Journal , 2006, 1(6): 888–893
10.1002/asia.200600260[15] Tian N, Zhou Z, Sun S,
. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity.
Science , 2007, 316(5825): 732–735
10.1126/science.1140484[16] Kelly K L, Coronado E, Zhao L L,
. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.
The Journal of Physical Chemistry B , 2002, 107(3): 668–677
10.1021/jp026731y[17] Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach.
Advanced Functional Materials , 2006, 16(9): 1209–1214
10.1002/adfm.200600066[18] Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness.
Advanced Materials , 2005, 17(4): 412–415
10.1002/adma.200401086[19] Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways.
Angewandte Chemie International Edition , 2007, 46(12): 2036–2038
10.1002/anie.200604637[20] Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms.
The Journal of Chemical Physics , 2005, 123(11): 114713 (9 pages)
[21] Liang H, Wang W, Huang Y,
. Controlled synthesis of uniform silver nanospheres.
The Journal of Physical Chemistry C , 2010, 114(16): 7427–7431
10.1021/jp9105713[22] Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm.
Analyst , 2003, 128(6): 686–691
10.1039/b212437h[23] Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.
Chemical Society Reviews , 2006, 35(3): 209–217
10.1039/b514191e[24] Xia Y, Xiong Y, Lim B,
. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
Angewandte Chemie International Edition , 2009, 48(1): 60–103
10.1002/anie.200802248[25] Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals.
Small , 2008, 4(3): 310–325
10.1002/smll.200701295[26] Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control.
Advanced Materials , 2010, 22(16): 1781–1804
10.1002/adma.200901271[27] Grzelczak M, Pérez-Juste J, Mulvaney P,
. Shape control in gold nanoparticle synthesis.
Chemical Society Reviews , 2008, 37(9): 1783–1791
10.1039/b711490g[28] Millstone J E, Hurst S J, Metraux G S,
. Colloidal gold and silver triangular nanoprisms.
Small , 2009, 5(6): 646–664
10.1002/smll.200801480[29] Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers.
The Journal of Chemical Physics , 2004, 120(1): 357–366
10.1063/1.1629280[30] Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles.
Journal of Fluorescence , 2004, 14(4): 331–341
10.1023/B:JOFL.0000031815.71450.74[31] Jain P K, Lee K S, El-Sayed I H,
. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
The Journal of Physical Chemistry B , 2006, 110(14): 7238–7248
10.1021/jp057170o[32] Huang X, El-Sayed I H, Qian W,
. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.
Journal of the American Chemical Society , 2006, 128(6): 2115–2120
10.1021/ja057254a[33] Ding H, Yong K-T, Roy I,
. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging.
The Journal of Physical Chemistry C , 2007, 111(34): 12552–12557
10.1021/jp0733419[34] Oyelere A K, Chen P C, Huang X,
. Peptide-conjugated gold nanorods for nuclear targeting.
Bioconjugate Chemistry , 2007, 18(5): 1490–1497
10.1021/bc070132i[35] Oldenburg A L, Hansen M N, Zweifel D A,
. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography.
Optical Express , 2006, 14(15): 6724–6738
10.1364/OE.14.006724[36] Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications.
Advanced Materials , 2009, 21(48): 4880–4910
10.1002/adma.200802789[37] Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO
2 films loaded with gold nanoparticles.
Journal of the American Chemical Society , 2005, 127(20): 7632–7637
10.1021/ja042192u[38] Qin P, Linder M, Brinck T,
. High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores.
Advanced Materials , 2009, 21(29): 2993–2996
10.1002/adma.200802461[39] Kelzenberg M D, Boettcher S W, Petykiewicz J A,
. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications.
Nature Materials , 2010, 9(3): 239–244
[40] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices.
Nature Materials , 2010, 9(3): 205–213
10.1038/nmat2629[41] Kulkarni A P, Noone K M, Munechika K,
. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms.
Nano Letters , 2010, 10(4): 1501–1505
10.1021/nl100615e[42] Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires.
The Journal of Physical Chemistry B , 2000, 104(26): 6095–6098
10.1021/jp001435b[43] Sanders A W, Routenberg D A, Wiley B J,
. Observation of plasmon propagation, redirection, and fan-out in silver nanowires.
Nano Letters , 2006, 6(8): 1822–1826
10.1021/nl052471v[44] Knight M W, Grady N K, Bardhan R,
. Nanoparticle-mediated coupling of light into a nanowire.
Nano Letters , 2007, 7(8): 2346–2350
10.1021/nl071001t[45] Guo X, Qiu M, Bao J,
. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits.
Nano Letters , 2009, 9(12): 4515–4519
10.1021/nl902860d[46] Akimov A V, Mukherjee A, Yu C L,
. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
Nature , 2007, 450(7168): 402–406
10.1038/nature06230[47] Noginov M A, Zhu G, Mayy M,
. Stimulated emission of surface plasmon polaritons.
Physical Review Letters , 2008, 101(22): 226806 (4 pages)
[48] Yan R, Pausauskie P, Huang J,
. Direct photonic-plasmonic coupling and routing in single nanowires.
Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(50): 21045–21050
10.1073/pnas.0902064106[49] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles.
Science , 2002, 298(5601): 2176–2179
10.1126/science.1077229[50] Zhang Q, Cobley C, Au L,
. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon.
ACS Applied Materials & Interfaces , 2009, 1(9): 2044–2048
10.1021/am900400a[51] Zeng J, Zheng Y, Rycenga M,
. Controlling the shapes of silver nanocrystals with different capping agents.
Journal of the American Chemical Society , 2010, 132(25): 8552–8553
10.1021/ja103655f[52] Kim F, Connor S, Song H,
. Platonic gold nanocrystals.
Angewandte Chemie International Edition , 2004, 43(28): 3673–3677
10.1002/anie.200454216[53] Kundu S, Maheshwari V, Niu S,
. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation.
Nanotechnology , 2008, 19(6): 065604 (5 pages)
[54] Huang C-J, Wang Y-H, Chiu P-H,
. Electrochemical synthesis of gold nanocubes.
Materials Letters , 2006, 60(15): 1896–1900
10.1016/j.matlet.2005.12.045[55] Zhang Q, Huang C Z, Ling J,
. Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde.
The Journal of Physical Chemistry B , 2008, 112(51): 16990–16994
10.1021/jp8081535[56] Zhu J J, Kan C X, Zhu X G G,
. Synthesis of perfect silver nanocubes by a simple polyol process.
Jouranl of Materials Research , 2007, 22(6): 1479–1485
10.1557/jmr.2007.0222[57] Habas S E, Lee H, Radmilovic V,
. Shaping binary metal nanocrystals through epitaxial seeded growth.
Nature Materials , 2007, 6(9): 692–697
10.1038/nmat1957[58] Fan F R, Liu D Y, Wu Y F,
. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes.
Journal of the American Chemical Society , 2008, 130(22): 6949–6951
10.1021/ja801566d[59] Li C C, Shuford K L, Chen M H,
. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties.
ACS Nano , 2008, 2(9): 1760–1769
10.1021/nn800264q[60] Li C C, Shuford K L, Park Q H,
. High-yield synthesis of single-crystalline gold nano-octahedra.
Angewandte Chemie International Edition , 2007, 46(18): 3264–3268
10.1002/anie.200604167[61] Song S, Liu R, Zhang Y,
. Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties.
Chemistry - A European Journal , 2010, 16(21): 6251–6256
10.1002/chem.200903279[62] Seo D, Park J C, Song H. Polyhedral gold nanocrystals with
Oh symmetry: from octahedra to cubes.
Journal of the American Chemical Society , 2006, 128(46): 14863–14870
10.1021/ja062892u[63] Zhou J, An J, Tang B,
. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement.
Langmuir , 2008, 24(18): 10407–10413
10.1021/la800961j[64] Tsuji M, Ogino M, Matsuo R,
. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF.
Crystal Growth & Design , 2010, 10(1): 296–301
10.1021/cg9009042[65] Zheng X L, Zhao X J, Guo D W,
. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength.
Langmuir , 2009, 25(6): 3802–3807
10.1021/la803814j[66] Zhang W, Liu Y, Cao R,
. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals.
Journal of the American Chemical Society , 2008, 130(46): 15581–15588
10.1021/ja805606q[67] Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties.
Chemistry of Materials , 2008, 20(16): 5186–5190
10.1021/cm800926u[68] Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G,
. Environmental optical sensitivity of gold nanodecahedra.
Advanced Functional Materials , 2007, 17(9): 1443–1450
10.1002/adfm.200601071[69] Murphy C J, Gole A M, Hunyadi S E,
. One-dimensional colloidal gold and silver nanostructures.
Inorganic Chemistry , 2006, 45(19): 7544–7554
10.1021/ic0519382[70] Murphy C J, Sau T K, Gole A M,
. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications.
The Journal of Physical Chemistry B , 2005, 109(29): 13857–13870
10.1021/jp0516846[71] Tao A, Kim F, Hess C,
. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy.
Nano Letters , 2003, 3(9): 1229–1233
10.1021/nl0344209[72] Sun Y, Mayers B, Herricks T,
. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence.
Nano Letters , 2003, 3(7): 955–960
10.1021/nl034312m[73] Sun Y, Gates B, Mayers B,
. Crystalline silver nanowires by soft solution processing.
Nano Letters , 2002, 2(2): 165–168
10.1021/nl010093y[74] Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction.
Electrochemistry Communication , 2008, 10(7): 1027–1030
10.1016/j.elecom.2008.03.015[75] N’Gom M, Ringnalda J, Mansfield J F,
. Single particle plasmon spectroscopy of silver nanowires and gold nanorods.
Nano Letters , 2008, 8(10): 3200–3204
10.1021/nl801504v[76] Tang X, Tsuji M, Jiang P,
. Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions.
Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 338(1-3): 33–39
10.1016/j.colsurfa.2008.12.029[77] Wiley B J, Wang Z, Wei J,
. Synthesis and electrical characterization of silver nanobeams.
Nano Letters , 2006, 6(10): 2273–2278
10.1021/nl061705n[78] Xue C, Metraux G S, Millstone J E,
. Mechanistic study of photomediated triangular silver nanoprism growth.
Journal of the American Chemical Society , 2008, 130(26): 8337–8344
10.1021/ja8005258[79] Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates.
Nano Letters , 2002, 2(9): 1003–1007
10.1021/nl025674h[80] Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly.
The Journal of Physical Chemistry B , 2002, 106(42): 10777–10781
10.1021/jp026376b[81] Jin R C, Cao Y W, Mirkin C A,
. Photoinduced conversion of silver nanospheres to nanoprisms.
Science , 2001, 294(5548): 1901–1903
10.1126/science.1066541[82] Washio I, Xiong Y, Yin Y,
. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates.
Advanced Materials , 2006, 18(13): 1745–1749
10.1002/adma.200600675[83] Xiong Y, Washio I, Chen J,
. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions.
Langmuir , 2006, 22(20): 8563–8570
10.1021/la061323x[84] Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl
4 with poly(vinyl pyrrolidone).
Langmuir , 2008, 24(18): 10437–10442
10.1021/la801803z[85] Xiong Y J, Siekkinen A R, Wang J G,
. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide.
Journal of Materials Chemistry , 2007, 17(25): 2600–2602
10.1039/b705253g[86] Cao Z W, Fu H B, Kang L T,
. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR.
Journal of Materials Chemistry , 2008, 18(23): 2673–2678
10.1039/b800691a[87] Zhao N, Wei Y, Sun N,
. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions.
Langmuir , 2008, 24(3): 991–998
10.1021/la702848x[88] Li L, Wang Z, Huang T,
. Porous gold nanobelts templated by metal-surfactant complex nanobelts.
Langmuir , 2010, 26(14): 12330–12335
10.1021/la1015737[89] Bai J, Qin Y, Jiang C,
. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns.
Chemistry of Materials , 2007, 19(14): 3367–3369
10.1021/cm0707861[90] Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry.
The Journal of Physical Chemistry C , 2008, 112(10): 3460–3463
10.1021/jp7117967[91] Im S H, Lee Y T, Wiley B,
. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity.
Angewandte Chemie International Edition , 2005, 44(14): 2154–2157
10.1002/anie.200462208[92] Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures.
Angewandte Chemie International Edition , 2006, 45(28): 4597–4601
10.1002/anie.200601277[93] Wiley B, Herricks T, Sun Y,
. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons.
Nano Letters , 2004, 4(9): 1733–1739
10.1021/nl048912c[94] Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water.
Journal of the Amercian Chemical Society , 2004, 126(41): 13200–13201
10.1021/ja046037r[95] Skrabalak S E, Au L, Li X,
. Facile synthesis of Ag nanocubes and Au nanocages.
Nature Protocols , 2007, 2(9): 2182–2190
10.1038/nprot.2007.326[96] Siekkinen A R, McLellan J M,
. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide.
Chemical Physics Letters , 2006, 432(4-6): 491–496
10.1016/j.cplett.2006.10.095[97] Wiley B J, Chen Y C, McLellan J M,
. Synthesis and optical properties of silver nanobars and nanorice.
Nano Letters , 2007, 7(4): 1032–1036
10.1021/nl070214f[98] Mulvihill M J, Ling X Y, Henzie J,
. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS.
Journal of the American Chemical Society , 2009, 132(1): 268–274
10.1021/ja906954f[99] Wu X, Redmond P L, Liu H,
. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms.
Journal of the American Chemical Society , 2008, 130(29): 9500–9506
10.1021/ja8018669[100] Mackay A L. A dense non-crystalloraphic packing of equal spheres.
Acta Crystallography , 1962, 15: 916–918
10.1107/S0365110X6200239X[101] Zhang Q, Xie J, Yang J,
. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
ACS Nano , 2009, 3(1): 139–148
10.1021/nn800531q[102] Peng S, McMahon J M, Schatz G C,
. Reversing the size-dependence of surface plasmon resonances.
Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(33): 14530–14534
10.1073/pnas.1007524107[103] Xu J, Li S, Weng J,
. Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form.
Advanced Functional Materials , 2008, 18(2): 277–284
10.1002/adfm.200700123[104] Lu X, Tuan H-Y, Korgel B A,
. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor.
Chemistry - A European Journal , 2008, 14(5): 1584–1591
10.1002/chem.200701570[105] Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl
4 with
N-vinyl pyrrolidone.
Chemistry - A European Journal , 2009, 15(47): 13181–13187
10.1002/chem.200901440[106] Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J,
. Synthesis and optical properties of gold nanodecahedra with size control.
Advanced Materials , 2006, 18(19): 2529–2534
10.1002/adma.200600475[107] Gao Y, Jiang P, Song L,
. Studies on silver nanodecahedrons synthesized by PVP-assisted
N,
N-dimethylformamide (DMF) reduction.
Journal of Crystal Growth , 2006, 289(1): 376–380
10.1016/j.jcrysgro.2005.11.123[108] Zheng X, Xu W, Corredor C,
. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect.
The Journal of Physical Chemistry C , 2007, 111(41): 14962–14967
10.1021/jp074583b[109] Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles.
Journal of the American Chemical Society , 2010, 132(6): 1825–1827
10.1021/ja910010b[110] Gao Y, Jiang P, Liu D F,
. Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires.
The Journal of Physical Chemistry B , 2004, 108(34): 12877–12881
10.1021/jp037116c[111] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio.
Chemical Communications , 2001, (7): 617–618
10.1039/b100521i[112] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires.
Advanced Materials , 2002, 14(1): 80–82
10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#[113] Lucas M, Leach A M, McDowell M T,
. Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations.
Physical Reviews B , 2008, 77(24): 245420 (4 pages)
[114] Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method.
Langmuir , 2005, 21(8): 3334–3337
10.1021/la046807c[115] Zhang S, Jiang Z, Xie Z,
. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism.
The Journal of Physical Chemistry B , 2005, 109(19): 9416–9421
10.1021/jp0441036[116] Kim S H, Choi B S, Kang K,
. Low temperature synthesis and growth mechanism of Ag nanowires.
Journal of Alloys and Compounds , 2007, 433(1-2): 261–264
10.1016/j.jallcom.2006.06.053[117] Zheng X, Zhu L, Yan A,
. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions.
Journal of Colloid & Interface Science , 2003, 268(2): 357–361
10.1016/j.jcis.2003.09.021[118] Zhou G, Lu M, Yang Z,
. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach.
Journal of Crystal Growth , 2006, 289(1): 255–259
10.1016/j.jcrysgro.2005.11.106[119] Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
ACS Nano , 2009, 3(1): 21–26
10.1021/nn800591y[120] Seo D, Yoo C I, Jung J,
. Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth.
Journal of the American Chemical Society , 2008, 130(10): 2940–2941
10.1021/ja711093j[121] Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process.
Advacned Materials , 2002, 14(11): 833–837
10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K[122] Sun Y, Yin Y, Mayers B T,
. Uniform silver nanowires synthesis by reducing AgNO
3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone).
Chemistry of Materials , 2002, 14(11): 4736–4745
10.1021/cm020587b[123] Jin R, Charles Cao Y, Hao E,
. Controlling anisotropic nanoparticle growth through plasmon excitation.
Nature , 2003, 425(6957): 487–490
10.1038/nature02020[124] An J, Tang B: Ning X,
. Photoinduced shape evolution: from triangular to hexagonal silver nanoplates.
The Journal of Physical Chemistry C , 2007, 111(49): 18055–18059
10.1021/jp0745081[125] Zhang Q, Ge J, Pham T,
. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability.
Angewandte Chemie International Edition , 2009, 48(19): 3516–3519
10.1002/anie.200900545[126] Maillard M, Giorgio S, Pileni M P. Silver nanodisks.
Advanced Materials , 2002, 14(15): 1084–1086
10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L[127] Yener D O, Sindel J, Randall C A,
. Synthesis of nanosized silver platelets in octylamine-water bilayer systems.
Langmuir , 2002, 18(22): 8692–8699
10.1021/la011229a[128] Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF.
Nano Letters , 2002, 2(8): 903–905
10.1021/nl025638i[129] Pastoriza-Santos I, Liz-Marzán L M.
N,
N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis.
Advanced Functioanl Materials , 2009, 19(5): 679–688
10.1002/adfm.200801566[130] Malikova N, Pastoriza-Santos I, Schierhorn M,
. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions.
Langmuir , 2002, 18(9): 3694–3697
10.1021/la025563y[131] Millstone J E, Park S, Shuford K L,
. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms.
Journal of the American Chemical Society , 2005, 127(15): 5312–5313
10.1021/ja043245a[132] Shankar S S, Rai A, Ahmad A,
. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings.
Chemistry of Materials , 2005, 17(3): 566–572
10.1021/cm048292g[133] Tsuji M, Hashimoto M, Nishizawa Y,
. Microwave-assisted synthesis of metallic nanostructures in solution.
Chemistry - A European Journal , 2005, 11(2): 440–452
10.1002/chem.200400417[134] Li C, Cai W, Li Y,
. Ultrasonically induced Au nanoprisms and their size manipulation based on aging.
The Journal of Physical Chemistry B , 2006, 110(4): 1546–1552
10.1021/jp055522l[135] Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process.
Nano Letters , 2003, 3(5): 675–679
10.1021/nl034140t[136] Zhang J, Liu H, Wang Z,
. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates.
Applied Physics Letters , 2007, 91(13): 133112 (3 pages)
[137] Zheng H, Smith R K, Jun Y-W,
. Observation of single colloidal platinum nanocrystal growth trajectories.
Science , 2009, 324(5932): 1309–1312
10.1126/science.1172104[138] Abécassis B, Testard F, Spalla O,
. Probing
in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering.
Nano Letters , 2007, 7(6): 1723–1727
10.1021/nl0707149[139] Polte J, Erler R, Thunemann A F,
. Nucleation and growth of gold nanoparticles studied via
in situ small angle X-ray scattering at millisecond time resolution.
ACS Nano , 2010, 4(2): 1076–1082
10.1021/nn901499c[140] Chen C-H, Sarma L S, Chen J-M,
. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.
ACS Nano , 2007, 1(2): 114–125
10.1021/nn700021x[141] Harada M, Inada Y.
In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions.
Langmuir , 2009, 25(11): 6049–6061
10.1021/la900550t[142] Cheong S, Watt J, Ingham B,
.
In situ and
ex situ studies of platinum nanocrystals: Growth and evolution in solution.
Journal of the American Chemical Society , 2009, 131(40): 14590–14595
10.1021/ja9065688[143] Middelkoop V, Boldrin P, Peel M,
. Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation.
Chemistry of Materials , 2009, 21(12): 2430–2435
10.1021/cm900118z[144] Bremholm M, Felicissimo M, Iversen B B. Time-resolved
in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water.
Angewandte Chemie International Edition , 2009, 48(26): 4788–4791
10.1002/anie.200901048[145] Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved
in situ synchrotron X-ray diffraction.
Advanced Materials , 2009, 21(35): 3572–3575
10.1002/adma.200803431[146] Park S Y, Lytton-Jean A K R, Lee B,
. DNA-programmable nanoparticle crystallization.
Nature , 2008, 451(7178): 553–556
10.1038/nature06508[147] Shevchenko E V, Talapin D V, Kotov N A,
. Structural diversity in binary nanoparticle superlattices.
Nature , 2006, 439(7072): 55–59
10.1038/nature04414[148] Li W Y, Camargo P H C, Au L,
. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes.
Angewandte Chemie International Edition , 2010, 49(1): 164–168
[149] Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals.
Nature Nanotechnology , 2007, 2(7): 435–440
10.1038/nnano.2007.189[150] Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation.
ACS Nano , 2009, 3(8): 2129–2138
10.1021/nn9005895[151] Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices.
Angewandte Chemie International Edition , 2009, 48(50): 9484–9488
10.1002/anie.200904118[152] Brousseau III L C, Novak J P, Marinakos S M,
. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers.
Advanced Materials , 1999, 11(6): 447–449
10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO;2-I[153] Nykypanchuk D, Maye M M, van der Lelie D,
. DNA-guided crystallization of colloidal nanoparticles.
Nature , 2008, 451(7178): 549–552
10.1038/nature06560