Behaviors of different dispersers on morphologies of porous TiO2 films

Ding REN, Yu ZOU, Chang-Yong ZHAN, Ning-Kang HUANG

PDF(295 KB)
PDF(295 KB)
Front. Mater. Sci. ›› 2010, Vol. 4 ›› Issue (4) : 394-397. DOI: 10.1007/s11706-010-0110-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Behaviors of different dispersers on morphologies of porous TiO2 films

Author information +
History +

Abstract

TiO2 films with nanoparticles dispersed by using three different additives such as acetylacetone, Emulsifier OP-10, and polyethylene glycol, respectively. It is found that for the TiO2 films produced with appropriate amount of Emulsifier OP-10, there are no reaggregation of TiO2 nanoparticles with pores of about 5–20 nm. By adding polyethylene glycol, the pore size of the TiO2 films could be in the range from about 50 to 200 nm. However, by using acetylacetone, aggregations of TiO2 nanoparticles always exist in the TiO2 films. The related mechanism on the aggregation of nanoparticles in the TiO2 slurries is discussed.

Keywords

dye-sensitized solar cell (DSSC) / porous TiO2 films / disperser / morphology

Cite this article

Download citation ▾
Ding REN, Yu ZOU, Chang-Yong ZHAN, Ning-Kang HUANG. Behaviors of different dispersers on morphologies of porous TiO2 films. Front Mater Sci Chin, 2010, 4(4): 394‒397 https://doi.org/10.1007/s11706-010-0110-4

References

[1]
O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
CrossRef Google scholar
[2]
Dai S-Y, Wang K-J. Optimum nanoporous TiO2 film and its application to dye-sensitized solar cells. Chinese Physics Letters, 2003, 20(6): 953–955
CrossRef Google scholar
[3]
Paek S M, Jung H, Lee Y J, . Nanostructured TiO2 films for dye-sensitized solar cells. Journal of Physics and Chemistry of Solids, 2006, 67(5-6): 1308–1311
CrossRef Google scholar
[4]
Saito Y, Kambe S, Kitamura T, . Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2004, 83(1): 1–13
CrossRef Google scholar
[5]
van de Lagemaat J, Benkstein K D, Frank A J. Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells. Journal of Physical Chemistry B, 2001, 105(50): 12433–12436
CrossRef Google scholar
[6]
Zumeta I, Espinosa R, Ayllon J A, . Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used. Solar Energy Materials and Solar Cells, 2003, 76(1): 15–24
CrossRef Google scholar
[7]
Lan X-H, Yang S-Q, Zou Y, . Effects of different dispersion methods on the microscopical morphology of TiO2 film. Chinese Physics Letters, 2007, 24(12): 3567–3569
CrossRef Google scholar
[8]
Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 2007, 91(7): 566–571
CrossRef Google scholar
[9]
Li M, Xiao Z D, Huan Z Y, . New binding state useful for attachment of dye-molecules onto TiO2 surface. Applied Surface Science, 1998, 125(2): 217–220
CrossRef Google scholar
[10]
Menzies D B, Dai Q, Cheng Y B, . 15th International Conference on Photochemical Conversion and Storage of Solar Energy. Paris, 2004, 713
[11]
Wessels K, Maekawa M, Rathousky J, . Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity. Microporous and Mesoporous Materials, 2008, 111(1-3): 55–61
CrossRef Google scholar
[12]
Chou C-S, Yang R-Y, Weng M-H, . Study of the applicability of TiO2/dye composite particles for a dye-sensitized solar cell. Advanced Powder Technology, 2008, 19(6): 541–558
CrossRef Google scholar
[13]
Nazeeruddin M K, Péchy P, Renouard T, . Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 2001, 123(8): 1613–1624
CrossRef Google scholar
[14]
Capan R, Chaure N B, Hassan A K, . Optical dispersion in spun nanocrystalline titania thin films. Semiconductor Science and Technology, 2004, 19(2): 198–202
CrossRef Google scholar
[15]
Tatsu S, Richard R. Stabilization of Colloidal Dispersions by Polymer Adsorption. New York: Marcel Dekker Press, 1998, 9: 23
[16]
Porter J F, Li Y G, Chan C K. The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science, 1999, 34(7): 1523–1531
CrossRef Google scholar
[17]
Alexeev V L. The instability of silica sol in concentrated solutions of Triton X100. Journal of Colloid and Interface Science, 1998, 206(2): 416–423
CrossRef Google scholar
[18]
Liufu S-C, Xiao H-N, Li Y-P, . Polyethylene glycol adsorption behavior on nanoparticulate TiO2 and its stability in aqueous dispersions. Journal of Inorganic Materials, 2005, 20(2): 310–316 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(295 KB)

Accesses

Citations

Detail

Sections
Recommended

/