2025-09-15 2025, Volume 18 Issue 3
  • Cover illustration

    Rolled-up nanomembrane microtube cavities support tailored higher-order whispering-gallery-mode resonances, enabling spatially resolved detection of laser irradiation-induced water molecule desorption from hydrophobic oxide surfaces. In particular, the ultra-thin cavity wall significantly enhances surface sensitivity via intense evanescent fields, allowing real-time monito [Detail] ...

    Download cover

  • Select all
  • PERSPECTIVE
    Shaoheng Xu , Jiajun Luo , Haisheng Song , Jiang Tang

    Optoelectronic devices, including light sensors and light-emitting diodes, are indispensable for our daily lives. Lead-based optoelectronic materials, including colloidal quantum dots and lead-halide perovskites, have emerged as promising candidates for the next-generation optoelectronic devices. This is primarily attributed to their tailorable optoelectronic properties, industrialization-compatible manufacturing techniques, seamless integration with silicon technology and excellent device performance. In this perspective, we review recent advancements in lead-based optoelectronic devices, specifically focusing on photodetectors and active displays. By discussing the current challenges and limitations of lead-based optoelectronics, we find the exciting potential of on-chip, in-situ fabrication methods for realizing high-performance optoelectronic systems.

  • RESEARCH ARTICLE
    Hongqing Li , Wenjing Tang , Yingshuang Shan , Jing Wang , Kai Jiang , Mingqi Fan , Tao Chen , Cheng Zhou , Wei Xia

    For 2 µm all-solid-state lasers, pulse modulation methods based on low-dimensional nanomaterial saturable absorbers (SAs) offer advantages such as compact structure, low cost, and ease of implementation. The construction of stable, highly nonlinear low-dimensional nanomaterial SAs is an urgent issue to be addressed. In this paper, two types of black phosphorus/rhenium disulfide (BP/ReS2) heterojunction with high stability were prepared separately by liquid phase exfoliation (LPE) and mechanical exfoliation (ME) methods, the nonlinear saturable absorption characteristics of the two types of heterojunctions have been characterized in detail. Then, the pulse modulation applications of these two materials have been studied in a 2 µm all-solid-state thulium-doped yttrium aluminum perovskite (Tm:YAP) passively Q-switched pulsed laser. The BP/ReS2 heterojunction SA prepared by the LPE method demonstrates a thinner thickness and lower non-saturation optical loss, which achieved the maximum average output power 528 mW at a pump power of 6.37 W, with a narrowest pulse width of 366 ns, and a maximum peak power of 28.85 W. These results indicate that the BP/ReS2 heterojunction SA has great potential for optical modulation device applications.

  • RESEARCH ARTICLE
    Mingquan Deng , Xiujie Dou , Xiaoyu Wang , Yin Yin , Xun Guan , Libo Ma , Xing Ma , Jiawei Wang

    Understanding the sorption dynamics between water molecules and various solid surfaces is of great interest in diverse fundamental and industrial research. For studying such dynamics in a microsystem, existing investigations mainly focus on sorption behaviors mediated by external temperature variations. Here, we demonstrate a route to in situ sensitive detection of laser irradiation-induced localized water molecule desorption at a sub-monolayer level on an oxide surface. Harnessing a tailored set of optical whispering-gallery-mode (WGM) resonances in a nanomembrane-based microtube cavity, the desorption can be tracked by resonance mode shift in real-time, and further explained using a combination of pseudo-first-order and pseudo-second-order models. Additionally, upon adjusted laser excitation locations, the axial-mode-dependent responses enable the retrieval of corresponding profiles of desorption-induced perturbation at equilibrium. This study provides new insights into molecular desorption kinetics and introduces a spatially resolved sensing technique with applications in surface science, molecular sensing, and the study of desorption dynamics at the nanoscale.

  • RESEARCH ARTICLE
    Hao Chi , Xinying He , Dezhou Lu , Shuoyang Wang , Jiahui Wu , Mengyang Jin , Xueliang Li , Zhuning Wang , Yaoguang Ma

    As nonlinearity is highly correlated with their geometric dimensions, precise fabrication of optical micro/nanofibers (MNFs) has been a longstanding pursuit. Existing MNFs fabrication systems typically adopt horizontal structures, which inherently introduce inaccuracy stem from asymmetry between fiber axis/geometry and chaotic environment due to high temperature airflow, vibration, etc., leading to deviations from the expected fiber morphology, especially for complex-structured MNFs. Here, we propose and manufacture a MNFs fabrication systems, effectively reducing fiber shape deviations during the fabrication process, enabling the fabrication of precise MNFs. To demonstrate the capability of our system in manufacturing precise structure MNFs, we design and fabricate diameter-gradient microfibers with four cascaded structures over a length of approximately 120 mm and a minimum diameter of about 1 µm for on-demand nonlinearity to generate supercontinuum spectrum. Eventually, we obtain supercontinuum spectrum covering 1463–1741 nm at the – 10 dB level with an efficiency of 264.62 nm/kW, exhibiting good flatness and enabling efficient spectral broadening.

  • RESEARCH ARTICLE
    Jialve Sun , Shengnan Huangfu , Tinglan Chen , Zijing Cai , Bowen Ruan , Fangxing Zhang

    Whispering-gallery-mode (WGM) microcavities have emerged as a promising alternative to traditional ultrasound probes, offering high sensitivity and wide bandwidth. In our research, we propose a novel silica WGM microprobe device, with impressive Q factors up to 107. The side-coupled approach and special encapsulation design make the device compact, robust, and capable of utilizing in both gaseous and liquid environments. We have successfully conducted photoacoustic (PA) imaging on various samples using this device which demonstrates a high sensitivity of 5.4 mPa/√Hz and a broad bandwidth of 41 MHz at –6 dB for ultrasound. And it is capable of capturing the vibration spectrum of microparticles up to a few hundred megahertz. Our compact and lightweight device exhibits significant application potential in PA endoscopic detection, nearfield ultrasound sensing and other aspects.

  • REVIEW ARTICLE
    Yating Deng , Jianyi Xu , Tingting Yu , Dan Zhu

    Three-dimensional reconstruction of tissue architecture is crucial for biomedical research. Tissue optical clearing technology overcomes light scattering limitations in biological tissues, providing an essential tool for high-resolution three-dimensional imaging. Given the high degree of similarity between large model animals (e.g., pigs, non-human primates) and humans in terms of anatomical structure, physiologic function, and disease mechanisms, the application of this technology in these models holds significant value for biomedical research. While well-established tissue clearing protocols exist for tissue sections, whole organs, and even entire bodies in rodents, scaling up to large animal specimens presents substantial challenges due to dimensional effects and compositional variations. This review systematically examines the methodological translation from rodent to large animals, particularly on species-specific differences in brain architecture and parenchymal organ composition that critically impact clearing efficiency. We comprehensively summarize recent applications in large animals, focusing on representative areas including neural circuit mapping, sensory organ imaging, and other related research domains, while proposing optimization strategies to overcome cross-species compatibility barriers. We hope this review will serve as a valuable reference for advancing tissue optical clearing applications in large-animal biomedical research.