Unveiling local molecular desorption dynamics using higher-order optical resonances

Mingquan Deng , Xiujie Dou , Xiaoyu Wang , Yin Yin , Xun Guan , Libo Ma , Xing Ma , Jiawei Wang

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 15

PDF (1658KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 15 DOI: 10.1007/s12200-025-00159-1
RESEARCH ARTICLE

Unveiling local molecular desorption dynamics using higher-order optical resonances

Author information +
History +
PDF (1658KB)

Abstract

Understanding the sorption dynamics between water molecules and various solid surfaces is of great interest in diverse fundamental and industrial research. For studying such dynamics in a microsystem, existing investigations mainly focus on sorption behaviors mediated by external temperature variations. Here, we demonstrate a route to in situ sensitive detection of laser irradiation-induced localized water molecule desorption at a sub-monolayer level on an oxide surface. Harnessing a tailored set of optical whispering-gallery-mode (WGM) resonances in a nanomembrane-based microtube cavity, the desorption can be tracked by resonance mode shift in real-time, and further explained using a combination of pseudo-first-order and pseudo-second-order models. Additionally, upon adjusted laser excitation locations, the axial-mode-dependent responses enable the retrieval of corresponding profiles of desorption-induced perturbation at equilibrium. This study provides new insights into molecular desorption kinetics and introduces a spatially resolved sensing technique with applications in surface science, molecular sensing, and the study of desorption dynamics at the nanoscale.

Graphical abstract

Keywords

Microtube cavity / Whispering-gallery-mode (WGM) / Molecular desorption / High-order axial mode / Optical sensing

Cite this article

Download citation ▾
Mingquan Deng, Xiujie Dou, Xiaoyu Wang, Yin Yin, Xun Guan, Libo Ma, Xing Ma, Jiawei Wang. Unveiling local molecular desorption dynamics using higher-order optical resonances. Front. Optoelectron., 2025, 18(3): 15 DOI:10.1007/s12200-025-00159-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carrasco, J., Hodgson, A., Michaelides, A.: A molecular perspective of water at metal interfaces. Nat. Mater. 11(8), 667–674 (2012)

[2]

Chen, L., Huang, S., Ras, R.H.A., Tian, X.: Omniphobic liquidlike surfaces. Nat. Rev. Chem. 7(2), 123–137 (2023)

[3]

Ruiz-Lopez, M.F, Francisco, J.S, Martins-Costa, M.T.C., Anglada, J.M: Molecular reactions at aqueous interfaces. Nat. Rev. Chem. 4(9), 459–475 (2020)

[4]

Gros, A., Sakong, S.: Ab initio simulations of water/metal interfaces. Chem. Rev. 122(12), 10746–10776 (2022)

[5]

Dargaville, B.L, Hutmacher, D.W: Water as the often neglected medium at the interface between materials and biology. Nat. Commun. 13(1), 4222 (2022)

[6]

Huang, S., Xu, Y., Zhou, T., Xie, M., Ma, Y., Liu, Q., Jing, L., Xu, H., Li, H.: Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-fenton-like reaction over Ag3PO4@NiFe2O4 composites. Appl. Catal. B Environ 225, 40–50 (2018)

[7]

Zhou, B., Gao, R., Zou, J.J, Yang, H.: Surface design strategy of catalysts for water electrolysis. Small 18(27), 2202336 (2022)

[8]

Gohring, J.T, Dale, P.S, Fan, X.: Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens. Actuators B: Chem. 146(1), 226–230 (2010)

[9]

Dantham, V.R, Holler, S., Barbre, C., Keng, D., Kolchenko, V., Arnold, S.: Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13(7), 3347–3351 (2013)

[10]

Guo, Z., Qin, Y., Chen, P., Hu, J., Zhou, Y., Zhao, X., Liu, Z., Fei, Y., Jiang, X., Wu, X.: Hyperboloid-drum microdisk laser biosensors for ultrasensitive detection of human IgG. Small 16(26), 2000239 (2020)

[11]

Wang, Z., Fang, G., Gao, Z., Liao, Y., Gong, C., Kim, M., Chang, G.E, Feng, S., Xu, T., Liu, T., Chen, Y.C: Autonomous microlasers for profiling extracellular vesicles from cancer spheroids. Nano Lett. 23(7), 2502–2510 (2023)

[12]

Qiagedeer, A., Yamagishi, H., Hayashi, S., Yamamoto, Y.: Polymer optical microcavity sensor for volatile organic compounds with distinct selectivity toward aromatic hydrocarbons. ACS Omega 6(32), 21066–21070 (2021)

[13]

Yang, S., Wang, Y.Q, Kong, Y., Huang, G.S, Zhao, Z., Wang, Y., Xu, B.R, Cui, J.Z, Mei, Y.F: Enhanced evanescent field coupling of smart particles in tubular optical microcavity for sensing application. Adv. Opt. Mater. 10(4), 2102158 (2022)

[14]

Madani, A., Harazim, S.M, Quiñones, V.A.B., Kleinert, M., Finn, A., Naz, E.S.G., Ma, L.B, Schmidt, O.G: Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing. Opt. Lett. 42(3), 486–489 (2017)

[15]

Wang, J.W, Li, J., Sun, S.Q, Dong, H.Y, Wu, L., Zhao, E.G, He, F., Ma, X., Zhao, Y.S: Revealing molecular diffusion dynamics in polymer microspheres by optical resonances. Sci. Adv. 9(19), eadf1725 (2023)

[16]

Ma, Q.L, Huang, L., Guo, Z.X, Rossmann, T.: Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption. Meas. Sci. Technol. 21(11), 115206 (2010)

[17]

Hou, L.T, Li, Y., Fu, Y.M, Yang, J.R, Xu, W.J, Song, X.K, Li, J.J, Liu, Y., Ran, L.L: Ultra-sensitive optical fiber humidity sensor via Au-film-assisted polyvinyl alcohol micro-cavity and Vernier effect. IEEE Trans. Instrum. Meas. 71, 1–9 (2022)

[18]

Mehrabani, S., Kwong, P., Gupta, M., Armani, A.M: Hybrid microcavity humidity sensor. Appl. Phys. Lett. 102(24), 241101 (2013)

[19]

Guo, J., Meng, X., Chen, J., Peng, J., Sheng, J., Li, X.Z, Xu, L., Shi, J.R, Wang, E., Jiang, Y.: Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13(2), 184–189 (2014)

[20]

Hodgson, A., Haq, S.: Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64(9), 381–451 (2009)

[21]

Wan, H., Zhang, S., Gu, Y., Xiong, J., Xu, J., Wan, C., Chao, J.: Label-free, ultra-low detection limit DNA biosensor using high quality optical microcavity functionalized by DNA tetrahedral nanostructure probes. Nanophotonics 12(16), 3323–3331 (2023)

[22]

Wang, Z., Liu, Y., Wang, H., Wang, S., Liu, K., Xu, T., Jiang, J., Chen, Y.C, Liu, T.: Ultra-sensitive dnazyme-based optofluidic biosensor with liquid crystal-Au nanoparticle hybrid amplification for molecular detection. Sens. Actuators B: Chem. 359, 131608 (2022)

[23]

Dantham, V.R, Holler, S., Kolchenko, V., Wan, Z., Arnold, S.: Taking whispering gallery-mode single virus detection and sizing to the limit. Appl. Phys. Lett. 101(4), 043704 (2012)

[24]

Ozgur, E., Roberts, K.E, Ozgur, E.O, Gin, A.N, Bankhead, J.R, Wang, Z., Su, J.: Ultrasensitive detection of human chorionic gonadotropin using frequency locked microtoroid optical resonators. Anal. Chem. 91(18), 11872–11878 (2019)

[25]

Zhan, Y.X, Hou, F.Y, Feng, S.F, Wang, X.K, Sun, W.F, Ye, J.S, Zhang, Y.: The distribution and evolution of refractive index in a polystyrene whispering gallery microcavity during glass transition. Adv. Opt. Mater. 10(17), 2102548 (2022)

[26]

Capocefalo, A., Gentilini, S., Barolo, L., Baiocco, P., Conti, C., Ghofraniha, N.: Biosensing with free space whispering gallery mode microlasers. Photon. Res. 11(5), 732–741 (2023)

[27]

Mao, W.B, Li, F., Jia, D., Zhang, Q., Yang, L.: On-chip multimode WGM microresonator with cross-correlation algorithm for enhanced sensing. Laser Photonics Rev. 18(8), 2301303 (2024)

[28]

Gavartin, E., Verlot, P., Kippenberg, T.J: A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7(8), 509–514 (2012)

[29]

Hodaei, H., Hassan, A.U, Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N, Khajavikhan, M.: Enhanced sensitivity at higher-order exceptional points. Nature 548(7666), 187–191 (2017)

[30]

Guo, R., He, Q., Zhang, Z., Xu, Y., Zhang, S., Lang, Q., Xiao, S., Han, P., Wang, J., Ding, T., Liu, T., Tsang, H.K, Goda, K., Cheng, Z.: High-Q silicon microring resonator with ultrathin sub-wavelength thicknesses for sensitive gas sensing. Appl. Phys. Rev. 11(2), 021417 (2024)

[31]

Wang, X., Yuan, T., Wu, J., Chen, Y., Chen, X.: Enhanced temperature sensing by multi-mode coupling in an on-chip microcavity system. Laser Photonics Rev. 18(4), 2300760 (2024)

[32]

Chen, W., Kaya Özdemir, Ş, Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192–196 (2017)

[33]

Shao, L., Jiang, X.F, Yu, X.C, Li, B.B, Clements, W.R, Vollmer, F., Wang, W., Xiao, Y.F, Gong, Q.: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 25(39), 5616–5620 (2013)

[34]

Xu, L., Jiang, X., Zhao, G., Ma, D., Tao, H., Liu, Z., Omenetto, F.G, Yang, L.: High-Q silk fibroin whispering gallery microresonator. Opt. Express 24(18), 20825 (2016)

[35]

Li, J., Tang, M., Duan, J., Xu, X., Xu, K., Ma, L., Wang, J.: Exceptional points in a spiral ring cavity for enhanced biosensing. J. Lightwave Technol. 41(9), 2870–2878 (2023)

[36]

Yin, Y., Pang, J.B, Wang, J.W, Lu, X.Y, Hao, Q., Naz, E.S.G., Zhou, X.X, Ma, L.B, Schmidt, O.G: Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces 11(17), 15891–15897 (2019)

[37]

Zhang, J., Zhong, J., Fang, Y.F, Wang, J., Huang, G.S, Cui, X.G, Mei, Y.F: Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing. Nanoscale 6(22), 13646–13650 (2014)

[38]

Ma, L.B, Li, S.L, Quinones, V.A.B., Yang, L.C, Xi, W., Jorgensen, M., Baunack, S., Mei, Y.F, Kiravittaya, S., Schmidt, O.G: Dynamic molecular processes detected by microtubular opto-chemical sensors self-assembled from prestrained nanomembranes. Adv. Mater. 25(16), 2357–2361 (2013)

[39]

Wang, J.W, Karnaushenko, D., Medina-Sánchez, M., Yin, Y., Ma, L.B, Schmidt, O.G: Three-dimensional microtubular devices for lab-on-a-chip sensing applications. ACS Sens. 4(6), 1476–1496 (2019)

[40]

Zhong, J., Wang, J., Huang, G., Yuan, G., Mei, Y.: Effect of physisorption and chemisorption of water on resonant modes of rolled-up tubular microcavities. Nanoscale Res. Lett. 8(1), 531 (2013)

[41]

Yin, Y., Wang, J.W, Wang, X.X, Li, S.L, Jorgensen, M.R, Ren, J.F, Meng, S., Ma, L.B, Schmidt, O.G: Water nanostructure formation on oxide probed in situ by optical resonances. Sci. Adv. 5(10), eaax6973 (2019)

[42]

Saggau, C.N, Gabler, F., Karnaushenko, D.D, Karnaushenko, D., Ma, L., Schmidt, O.G: Wafer-scale high-quality microtubular devices fabricated via dry-etching for optical and microelectronic applications. Adv. Mater. 32(37), 2003252 (2020)

[43]

Yin, Y., Li, S., Bottner, S., Yuan, F., Giudicatti, S., SaeiGhareh Naz, E., Ma, L., Schmidt, O.G: Localized surface plasmons selectively coupled to resonant light in tubular microcavities. Phys. Rev. Lett. 116(25), 253904 (2016)

[44]

Wang, J., Yin, Y., Hao, Q., Huang, S., Saei Ghareh Naz, E., Schmidt, O.G, Ma, L.: External strain enabled post-modification of nanomembrane-based optical microtube cavities. ACS Photonics 5(5), 2060–2067 (2018)

[45]

Yin, Y., Wang, J., Lu, X., Hao, Q., Saei Ghareh Naz, E., Cheng, C., Ma, L., Schmidt, O.G: In situ generation of plasmonic nanoparticles for manipulating photon–plasmon coupling in microtube cavities. ACS Nano 12(4), 3726–3732 (2018)

[46]

Wang, J., Tang, M., Yang, Y.D, Yin, Y., Chen, Y., Saggau, C.N, Zhu, M., Yuan, X., Karnaushenko, D., Huang, Y.Z, Ma, L., Schmidt, O.G: Steering directional light emission and mode chirality through postshaping of cavity geometry. Laser Photonics Rev. 14(10), 2000118 (2020)

[47]

Strelow, C., Rehberg, H., Schultz, C.M, Welsch, H., Heyn, C., Heitmann, D., Kipp, T.: Optical microcavities formed by semiconductor microtubes using a bottlelike geometry. Phys. Rev. Lett. 101(12), 127403 (2008)

[48]

Strelow, C., Schultz, C.M, Rehberg, H., Sauer, M., Welsch, H., Stemmann, A., Heyn, C., Heitmann, D., Kipp, T.: Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators. Phys. Rev. B 85(15), 155329 (2012)

[49]

Wang, J., Zhan, T.R, Huang, G.S, Chu, P.K, Mei, Y.F: Optical microcavities with tubular geometry: properties and applications. Laser Photonics Rev. 8(4), 521–547 (2014)

[50]

Wang, J., Yin, Y., Yang, Y.D, Hao, Q., Tang, M., Wang, X., Saggau, C.N, Karnaushenko, D., Yan, X., Huang, Y.Z, Ma, L., Schmidt, O.G: Deterministic yet flexible directional light emission from spiral nanomembrane cavities. ACS Photonics 6(10), 2537–2544 (2019)

[51]

Johnson, S.G, Ibanescu, M., Skorobogatiy, M.A, Weisberg, O., Joannopoulos, J.D, Fink, Y.: Perturbation theory for maxwell’s equations with shifting material boundaries. Phys. Rev. E 65(6), 066611 (2002)

[52]

Mo, C.M, Zhang, L., Xie, C., Wang, T.: Luminescence of nanometer-sized amorphous silicon nitride solids. J. Appl. Phys. 73(10), 5185–5188 (1993)

[53]

Vlasukova, L., Parkhomenko, I., Komarov, F., Akilbekov, A., Murzalinov, D., Mudryi, A., Ryabikin, Y., Romanov, I., Giniyatova, S., Dauletbekova, A.: Luminescence of silicon nitride films implanted with nitrogen ions. Mater. Res. Express 5(9), 096414 (2018)

[54]

Ward, C.A, Findlay, R.D, Rizk, M.: Statistical rate theory of interfacial transport. I. Theoretical development. J. Chem. Phys. 76(11), 5599–5605 (1982)

[55]

Elliott, J.A.W., Ward, C.A: Temperature programmed desorption: a statistical rate theory approach. J. Chem. Phys. 106(13), 5677–5684 (1997)

[56]

Plazinski, W., Rudzinski, W., Plazinska, A.: Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Colloid Interface Sci. 152(1–2), 2–13 (2009)

[57]

Rudzinski, W., Plazinski, W.: On the applicability of the pseudosecond order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption 15(2), 181–192 (2009)

[58]

Ofomaja, A.E, Naidoo, E.B, Modise, S.J: Dynamic studies and pseudo-second order modeling of copper(II) biosorption onto pine cone powder. Desalination 251(1–3), 112–122 (2010)

[59]

Bashiri, H.: Desorption kinetics at the solid/solution interface: a theoretical description by statistical rate theory for close-to-equilibrium systems. J. Phys. Chem. C 115(13), 5732–5739 (2011)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (1658KB)

1116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/