Precision vertical drawing of diameter-gradient microfibers: cascaded geometries for tailored nonlinearity

Hao Chi , Xinying He , Dezhou Lu , Shuoyang Wang , Jiahui Wu , Mengyang Jin , Xueliang Li , Zhuning Wang , Yaoguang Ma

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 16

PDF (4350KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 16 DOI: 10.1007/s12200-025-00160-8
RESEARCH ARTICLE

Precision vertical drawing of diameter-gradient microfibers: cascaded geometries for tailored nonlinearity

Author information +
History +
PDF (4350KB)

Abstract

As nonlinearity is highly correlated with their geometric dimensions, precise fabrication of optical micro/nanofibers (MNFs) has been a longstanding pursuit. Existing MNFs fabrication systems typically adopt horizontal structures, which inherently introduce inaccuracy stem from asymmetry between fiber axis/geometry and chaotic environment due to high temperature airflow, vibration, etc., leading to deviations from the expected fiber morphology, especially for complex-structured MNFs. Here, we propose and manufacture a MNFs fabrication systems, effectively reducing fiber shape deviations during the fabrication process, enabling the fabrication of precise MNFs. To demonstrate the capability of our system in manufacturing precise structure MNFs, we design and fabricate diameter-gradient microfibers with four cascaded structures over a length of approximately 120 mm and a minimum diameter of about 1 µm for on-demand nonlinearity to generate supercontinuum spectrum. Eventually, we obtain supercontinuum spectrum covering 1463–1741 nm at the – 10 dB level with an efficiency of 264.62 nm/kW, exhibiting good flatness and enabling efficient spectral broadening.

Graphical abstract

Keywords

Micro/nanofiber / Fiber tapering / Supercontinuum generation / Cascaded micro/nanofiber

Cite this article

Download citation ▾
Hao Chi, Xinying He, Dezhou Lu, Shuoyang Wang, Jiahui Wu, Mengyang Jin, Xueliang Li, Zhuning Wang, Yaoguang Ma. Precision vertical drawing of diameter-gradient microfibers: cascaded geometries for tailored nonlinearity. Front. Optoelectron., 2025, 18(3): 16 DOI:10.1007/s12200-025-00160-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Korposh, S., James, S.W., Lee, S.W., Tatam, R.P.: Tapered optical fibre sensors: current trends and future perspectives. Sensors 19(10), 2294 (2019)

[2]

Schneeweiss, P., Zeiger, S., Hoinkes, T., Rauschenbeutel, A., Volz, J.: Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling. Opt. Lett. 42(1), 85–88 (2017)

[3]

Li, Y., Wang, L., Li, L., Tong, L.: Optical microfiber-based ultrafast fiber lasers. Appl. Phys. B 125(10), 192 (2019)

[4]

Zhang, J., Fang, H., Wang, P., Fang, W., Zhang, L., Guo, X., Tong, L.: Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics. Photonics Insights 3(1), R02 (2024)

[5]

Tong, L., Lou, J., Mazur, E.: Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12(6), 1025–1035 (2004)

[6]

Nakayama, Y., Pauzauskie, P.J., Radenovic, A., Onorato, R.M., Saykally, R.J., Liphardt, J., Yang, P.: Tunable nanowire nonlinear optical probe. Nature 447(7148), 1098–1101 (2007)

[7]

Cen, Q., Pian, S., Liu, X., Tang, Y., He, X., Ma, Y.: Microtaper leaky-mode spectrometer with picometer resolution. eLight. 3(1), 9 (2023)

[8]

Brambilla, G., Xu, F., Feng, X.: Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electron. Lett. 42(9), 517–519 (2006)

[9]

Yao, N., Linghu, S., Xu, Y., Zhu, R., Zhou, N., Gu, F., Zhang, L., Fang, W., Ding, W., Tong, L.: Ultra-long subwavelength micro/ nanofibers with low loss. IEEE Photonics Technol. Lett. 32(17), 1069–1072 (2020)

[10]

Ding, L., Belacel, C., Ducci, S., Leo, G., Favero, I.: Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt. 49(13), 2441 (2010)

[11]

Shi, L., Chen, X., Liu, H., Chen, Y., Ye, Z., Liao, W., Xia, Y.: Fabrication of submicron-diameter silica fibers using electric strip heater. Opt. Express 14(12), 5055–5060 (2006)

[12]

Brambilla, G., Koizumi, F., Feng, X., Richardson, D.J.: Compound- glass optical nanowires. Electron. Lett. 41(7), 400–402 (2005)

[13]

Grellier, A.J.C., Zayer, N.K., Pannell, C.N.: Heat transfer modelling in CO2 laser processing of optical fibres. Opt. Commun. 152(4–6), 324–328 (1998)

[14]

Brambilla, G., Finazzi, V., Richardson, D.: Ultra-low-loss optical fiber nanotapers. Opt. Express 12(10), 2258–2263 (2004)

[15]

Tong, L., Lou, J., Ye, Z., Svacha, G.T., Mazur, E.: Self-modulated taper drawing of silica nanowires. Nanotechnology 16(9), 1445 1448 (2005)

[16]

Sumetsky, M., Dulashko, Y., Hale, A.: Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Opt. Express 12(15), 3521–3531 (2004)

[17]

Fang, H., Xie, Y., Yuan, Z., Cai, D., Zhang, J., Guo, X., Tong, L.: Parallel fabrication of silica optical microfibers and nanofibers. Light. Adv. Manuf. 5(2), 1 (2024)

[18]

Cordeiro, C.M.B., Wadsworth, W.J., Birks, T.A., Russell, P.S.: Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. Opt. Lett. 30(15), 1980–1982 (2005)

[19]

Hartung, A., Heidt, A.M., Bartelt, H.: Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths. Opt. Express 20(13), 13777–13788 (2012)

[20]

Li, Y.H., Zhao, Y.Y., Wang, L.J.: Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers. Opt. Lett. 37(16), 3441–3443 (2012)

[21]

Li, Y., Wang, L., Kang, Y., Guo, X., Tong, L.: Microfiber-enabled dissipative soliton fiber laser at 2 µm. Opt. Lett. 43(24), 6105–6108 (2018)

[22]

Wang, L., Xu, P., Li, Y., Han, J., Guo, X., Cui, Y., Liu, X., Tong, L.: Femtosecond mode-locked fiber laser at 1 µm via optical microfiber dispersion management. Sci. Rep. 8(1), 4732 (2018)

[23]

Zhou, J., Li, Y., Ma, Y., Yang, Q., Liu, Q.: Broadband noiselike pulse generation at 1 µm via dispersion and nonlinearity management. Opt. Lett. 46(7), 1570–1573 (2021)

[24]

Li, X., Cui, L., Guo, C., Li, Y.H., Xu, Z.Y., Wang, L.J., Fang, W.: Generation of correlated photon pairs in micro/nano-fibers. Proc. SPIE 9136, 400 (2014)

[25]

Delaye, P., Liu, T., Mer, E., Bouhadida, M., Lebrun, S.: Continuous- wave generation of photon pairs in silica nanofibers using single-longitudinal- and multilongitudinal-mode pumps. Phys. Rev. A 104(6), 063715 (2021)

[26]

Peacock, A.C., Gibson, U.J., Ballato, J.: Silicon optical fibres – past, present, and future. Adv. Phys. X 1(1), 114–127 (2016)

[27]

Nordstrand, E.F., Dibbs, A.N., Eraker, A.J., Gibson, U.J.: Alkaline oxide interface modifiers for silicon fiber production. Opt. Mater. Express 3(5), 651 (2013)

[28]

Ballato, J., Snitzer, E.: Fabrication of fibers with high rareearth concentrations for Faraday isolator applications. Appl. Opt. 34(30), 6848–6854 (1995)

[29]

Koptev, M.Y., Zaprialov, A.E., Kosolapov, A.F., Denisov, A.N., Muravyeva, M.S., Semjonov, S.L., Muravyev, S.V., Kim, A.V.: Visible to Mid-IR supercontinuum generation in cascaded PCF-Germanate fiber using femtosecond Yb-fiber pump. Fibers 11(9), 72 (2023)

[30]

Rong, J., Yang, H., Xiao, Y.: Accurately shaping supercontinuum spectrum via cascaded PCF. Sensors (Basel) 20(9), 2478 (2020)

[31]

Birks, T.A., Li, Y.W.: The shape of fiber tapers. J. Lightwave Technol. 10(4), 432–438 (1992)

[32]

Lee, J.Y., Kim, D.Y.: Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry. Opt. Express 14(24), 11608–11615 (2006)

[33]

Lu, P., Ding, H., Mihailov, S.J.: Direct measurement of the zerodispersion wavelength of tapered fibres using broadband-light interferometry. Meas. Sci. Technol. 16(8), 1631–1636 (2005)

[34]

Wang, X., Lou, S., Lian, Z.: Experimental research on the dispersion property of hollow core photonic bandgap fiber. Wuli Xuebao 65(19), 194212 (2016)

[35]

Chernikov, S.V., Mamyshev, P.V.: Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8(8), 1633 (1991)

[36]

Hult, J.: A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25(12), 3770–3775 (2007)

[37]

Heidt, A.M.: Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technol. 27(18), 3984–3991 (2009)

[38]

Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

[39]

Dudley, J.M., Provino, L., Grossard, N., Maillotte, H., Windeler, R.S., Eggleton, B.J., Coen, S.: Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. J. Opt. Soc. Am. B 19(4), 765–771 (2002)

[40]

Stark, S.P., Travers, J.C., Russell, P.S.J.: Extreme supercontinuum generation to the deep UV. Opt. Lett. 37(5), 770–772 (2012)

[41]

Birks, T.A., Wadsworth, W.J., Russell, P.S.J.: Supercontinuum generation in tapered fibers. Opt. Lett. 25(19), 1415–1417 (2000)

[42]

Eftekhar, M.A., Sanjabi-Eznaveh, Z., Lopez-Aviles, H.E., Benis, S., Antonio-Lopez, J.E., Kolesik, M., Wise, F., Amezcua-Correa, R., Christodoulides, D.N.: Accelerated nonlinear interactions in graded-index multimode fibers. Nat. Commun. 10(1), 1638 (2019)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (4350KB)

802

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/