Nonlinear saturable absorption properties of BP/ReS2 heterojunction and its application in 2 µm all-solid-state lasers

Hongqing Li , Wenjing Tang , Yingshuang Shan , Jing Wang , Kai Jiang , Mingqi Fan , Tao Chen , Cheng Zhou , Wei Xia

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 14

PDF (2071KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (3) : 14 DOI: 10.1007/s12200-025-00157-3
RESEARCH ARTICLE

Nonlinear saturable absorption properties of BP/ReS2 heterojunction and its application in 2 µm all-solid-state lasers

Author information +
History +
PDF (2071KB)

Abstract

For 2 µm all-solid-state lasers, pulse modulation methods based on low-dimensional nanomaterial saturable absorbers (SAs) offer advantages such as compact structure, low cost, and ease of implementation. The construction of stable, highly nonlinear low-dimensional nanomaterial SAs is an urgent issue to be addressed. In this paper, two types of black phosphorus/rhenium disulfide (BP/ReS2) heterojunction with high stability were prepared separately by liquid phase exfoliation (LPE) and mechanical exfoliation (ME) methods, the nonlinear saturable absorption characteristics of the two types of heterojunctions have been characterized in detail. Then, the pulse modulation applications of these two materials have been studied in a 2 µm all-solid-state thulium-doped yttrium aluminum perovskite (Tm:YAP) passively Q-switched pulsed laser. The BP/ReS2 heterojunction SA prepared by the LPE method demonstrates a thinner thickness and lower non-saturation optical loss, which achieved the maximum average output power 528 mW at a pump power of 6.37 W, with a narrowest pulse width of 366 ns, and a maximum peak power of 28.85 W. These results indicate that the BP/ReS2 heterojunction SA has great potential for optical modulation device applications.

Graphical abstract

Keywords

BP/ReS 2 / Heterojunction / Saturable absorption / All-solid-state laser / Q-switched

Cite this article

Download citation ▾
Hongqing Li, Wenjing Tang, Yingshuang Shan, Jing Wang, Kai Jiang, Mingqi Fan, Tao Chen, Cheng Zhou, Wei Xia. Nonlinear saturable absorption properties of BP/ReS2 heterojunction and its application in 2 µm all-solid-state lasers. Front. Optoelectron., 2025, 18(3): 14 DOI:10.1007/s12200-025-00157-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu, Q., Wang, Y., Zhao, G., Wu, H., Hu, Y., Wang, M.: Graphdiyne-based all-solid-state passively Q-switched Tm:YAP laser at 2 µm. Nanomaterials (Basel) 13 (15), 2171 (2023)

[2]

Li, K., Niu, C., Wu, C., Yu, Y., Ma, Y.: Development of a 2 µm solid-state laser for Lidar in the past decade. Sensors (Basel) 23 (16), 7024 (2023)

[3]

Zu, Y., Zhang, C., Guo, X., Liang, W., Liu, J., Su, L., Zhang, H.: A solid-state passively Q-switched Tm, Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm. Laser Phys. Lett. 16 (1), 015803 (2019)

[4]

Wang, R., Zhang, L., Sun, T., Wang, H.: Preparation and characteristics of SnS2 saturable absorber and its application in passively Q-switched Nd:YAG/Cr4+:YAG laser. Optik 212, 164712 (2020)

[5]

Liu, B., Shi, J., Zhang, H., Wang, W., Li, M., Wang, X., Zhou, W., Zhu, S., Yu, Q.: Frontier in two-dimensional materials with nonlinearity: A big data analysis of saturable absorbers for pulse lasers applications. J. Nonlinear Opt. Phys. Mater. 33 (2), 2340012 (2024)

[6]

Zhang, B., Liu, J., Wang, C., Yang, K., Lee, C., Zhang, H., He, J.: Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photonics Rev. 14 (2), 1900240 (2020)

[7]

Zheng, D., Tang, W., Zhu, J., Gu, Z.: Preparation and application of chromatographic stationary phase based on two-dimensional materials. Se Pu 42 (6), 524–532 (2024)

[8]

Li, J., Luo, H., Zhai, B., Lu, R., Guo, Z., Zhang, H., Liu, Y.: Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6 (1), 30361 (2016)

[9]

Wu, K., Zhang, X., Wang, J., Li, X., Chen, J.: WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 23 (9), 11453 (2015)

[10]

Guo, B., Xiao, Q., Wang, S., Zhang, H.: 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 13 (12), 1800327 (2019)

[11]

Zhang, M., Howe, R.C.T., Woodward, R.I., Kelleher, E.J.R., Torrisi, F., Hu, G., Popov, S.V., Taylor, J.R., Hasan, T.: Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser. Nano Res. 8 (5), 1522–1534 (2015)

[12]

Qadir, A., Le, T.K., Malik, M., Min-Dianey, K.A.A., Saeed, I., Yu, Y.: Representative 2D-material-based nanocomposites and their emerging applications: a review. RSC Adv. 11 (39), 23860–23880 (2021)

[13]

Cao, R., Fan, S., Yin, P., Ma, C., Zeng, Y., Wang, H., Khan, K., Wageh, S., Al-Ghamd, A.A., Tareen, A.K., Al-Sehemi, A.G., Shi, Z., Xiao, J., Zhang, H.: Mid-infrared optoelectronic devices based on two-dimensional materials beyond graphene: status and trends. Nanomaterials (Basel) 12 (13), 2260 (2022)

[14]

Shinde, P.V., Tripathi, A., Thapa, R., Rout, C.S.: Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coord. Chem. Rev. 453, 214335 (2022)

[15]

Li, D., Gong, Y., Chen, Y., Lin, J., Khan, Q., Zhang, Y., Li, Y., Zhang, H., Xie, H.: Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020)

[16]

Liu, W., Zhu, Y.N., Liu, M., Wen, B., Fang, S., Teng, H., Lei, M., Liu, L.M., Wei, Z.: Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon. Res. 6 (3), 220–227 (2018)

[17]

Wei, Z., Chen, S., Ding, J., Sun, B., Qi, X., Lu, B., Bai, J.: Recent advance in tunable single-frequency fiber laser based on twodimensional materials. Front. Phys. 8, 580602 (2021)

[18]

Wu, Q., Zhao, G., Wu, H., Zhang, M.: Open-ended exploration of ultrashort pulse lasers: an innovative design strategy for devices based on 2D materials. Photon. Res. 11 (7), 1238–1261 (2023)

[19]

Zhao, W., Chen, G., Li, W., Wang, G., Zeng, C.: All-fiber saturable absorbers for ultrafast fiber lasers. IEEE Photonics J. 11 (5), 1–19 (2019)

[20]

Lau, K.Y., Hou, D.: Recent research and advances of materialbased saturable absorber in mode-locked fiber laser. Opt. Laser Technol. 137, 106826 (2021)

[21]

Li, L., Xue, Z., Pang, L., Xiao, X., Yang, H., Zhang, J., Zhang, Y., Zhao, Q., Liu, W.: Saturable absorption properties and ultrafast photonics applications of HfS3. Opt. Lett. 49 (5), 1293–1296 (2024)

[22]

Xing, X., Liu, Y., Han, J., Liu, W., Wei, Z.: Preparation of high damage threshold device based on Bi2Se3 film and its application in fiber lasers. ACS Photonics 10 (7), 2264–2271 (2023)

[23]

Chu, H., Xu, M., Liu, B., Pan, Z., Pan, H., Zhao, S., Xu, D., Li, D.: Fabrication of amorphous nanoporous ZrO2/SiO2 aerogel enabling nonlinear optical properties. J. Materiomics 10 (5), 1109–1116 (2024)

[24]

Zhai, X., Ding, Y., Min, H., Gao, L., Liu, G., Lan, R., Shen, Y.: An infrared passively Q-switched laser based on graphene/BN heterojunction. Infrared Phys. Technol. 134, 104851 (2023)

[25]

Dong, L., Chu, H., Li, Y., Zhao, S., Li, D.: Enhanced optical nonlinearity and ultrafast carrier dynamics of TiO2/CuO nanocomposites. Composites Part B 237, 109860 (2022)

[26]

Zhao, G., Hou, J., Wu, Y., He, J., Hao, X.: Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation. Adv. Opt. Mater. 3 (7), 937–942 (2015)

[27]

Raba-Paez, A.M., Malafatti, J.O.D., Parra-Vargas, C.A., Paris, E.C., Rincon-Joya, M.: Structural evolution, optical properties, and photocatalytic performance of copper and tungsten heterostructure materials. Mater. Today Commun. 26, 101886 (2021)

[28]

Srinivasan, S., Balasubramanian, G.: Reduced thermal transport in the graphene/MoS2/graphene heterostructure: A comparison with freestanding monolayers. Langmuir 34 (10), 3326–3335 (2018)

[29]

Wang, T., Jin, X., Yang, J., Wu, J., Yu, Q., Pan, Z., Shi, X., Xu, Y., Wu, H., Wang, J., He, T., Zhang, K., Zhou, P.: Oxidationresistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 µm Tm/Ho-doped fiber laser. ACS Appl. Mater. Interfaces 11 (40), 36854–36862 (2019)

[30]

Hu, Z., Hu, X., He, P., Chen, J., Huang, J., Xie, Z., Zhao, Y., Tao, L., Hao, M., He, J.: NbS2-nanosheet-based saturable absorber for 1.5 µm and 2 µm ultrafast fiber lasers. Photon. Nanostruct. 54, 101117 (2023)

[31]

Wu, M., Li, X., Wu, K., Wu, D., Dai, S., Xu, T., Nie, Q.: Allfiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber. Opt. Fiber Technol. 47, 152–157 (2019)

[32]

Xue, Y., Li, L., Zhang, B., Wang, R., Cui, J., Tian, F., Zhang, J.: Watt-level continuous-wave mode-locked Nd:YVO4 laser with ReSe2 saturable absorber. IEEE Photon. J. 12 (5), 1–10 (2020)

[33]

Xiong, Y., Chen, H., Zhang, D.W., Zhou, P.: Electronic and optoelectronic applications based on ReS2. Phys. Status Solidi 13 (6), 1800658 (2019)

[34]

Cao, S., Xing, Y., Han, J., Luo, X., Lv, W., Lv, W., Zhang, B., Zeng, Z.: Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p–n diode. Nanoscale 10 (35), 16805–16811 (2018)

[35]

Zhu, J., Ning, J., Wang, D., Zhang, J., Guo, L., Hao, Y.: Tunable band offset in black phosphorus/ReS2 van der Waals heterostructure with robust direct band and inherent anisotropy. Superlattices Microstruct. 129, 274–281 (2019)

[36]

Srivastava, P.K., Hassan, Y., Gebredingle, Y., Jung, J., Kang, B., Yoo, W.J., Singh, B., Lee, C.: Van der Waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 11 (8), 8266–8275 (2019)

[37]

Zhu, W., Wei, X., Yan, F., Lv, Q., Hu, C., Wang, K.: Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond. 40 (9), 092001 (2019)

[38]

Nadar, A., Arora, Y., Thakur, P., Narayanan, T.N., Bhattacharya, A., Khushalani, D.: ReS2 vs MoS2: Viable electrodes for batteries and capacitors. Electrochem. Commun. 139, 107313 (2022)

[39]

Chu, Z., Liu, J., Guo, Z., Zhang, H.: 2 µm passively Q-switched laser based on black phosphorus. Opt. Mater. Express 6 (7), 2374–2379 (2016)

[40]

Kong, L., Qin, Z., Xie, G., Guo, Z., Zhang, H., Yuan, P., Qian, L.: Black phosphorus as broadband saturable absorber for pulsed lasers from 1 µm to 2.7 µm wavelength. Laser Phys. Lett. 13 (4), 045801 (2016)

[41]

Pang, L., Jiang, L., Zhao, M., Zhang, J., Zhao, Q., Li, L., Wu, R., Lv, Y., Liu, W.: Ti3C2Tx/CuO heterojunction for ultrafast photonics. J. Mater. Sci. Technol. 223, 208–216 (2025)

[42]

Liu, Y., Xu, Y., Xu, C., Chen, J., Liu, H., Zhang, H., Jin, L., Fan, J., Zou, Y., Ma, X.: Interface charge transfer in MXenes/graphene heterostructures for ultrafast photonics. Adv. Opt. Mater. 12 (4), 2301439 (2024)

[43]

Ding, Y., Zhong, Y.H., Guo, J.Q., Lu, Y., Luo, H.Y., Shen, Y., Deng, X.H.: Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Phys. Sin. 70 (3), 037801 (2021)

[44]

Zhang, M.D., Jiao, C.Y., Wen, T., Li, J., Pei, S.H., Wang, Z.H., Xia, J.: In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Phys. Sin. 71 (14), 140702 (2022)

[45]

Haigh, S.J., Gholinia, A., Jalil, R., Romani, S., Britnell, L., Elias, D.C., Novoselov, K.S., Ponomarenko, L.A., Geim, A.K., Gorbachev, R.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11 (9), 764–767 (2012)

[46]

Su, X., Nie, H., Wang, Y., Li, G., Yan, B., Zhang, B., Yang, K., He, J.: Few-layered ReS2 as saturable absorber for 28 µm solid state laser. Opt. Lett. 42 (17), 3502–3505 (2017)

[47]

Cao, L., Tang, W., Zhao, S., Li, Y., Zhang, X., Qi, N., Li, D.: 2 µm passively Q-switched all-solid-state laser based on WSe2 saturable absorber. Opt. Laser Technol. 113, 72–76 (2019)

[48]

Liu, S., Jin, Y., Lv, J., Li, K., Dong, L., Wang, P., Liu, J., Lu, J., Ni, Z., Zhang, B.: High-output ∼ 3 µm MIR pulsed laser enabled by surface state regulation in PtTe2 optical switch. Appl. Phys. Lett. 124 (21), 213101 (2024)

[49]

Han, S., Zhou, Y., Wang, Z., Hu, D., Xu, X., Yu, H., Xu, J., Xu, X.: Graphene Q-switched 14 µm solid state laser. Laser Phys. Lett. 15 (7), 075801 (2018)

[50]

Liu, X., Yang, K., Zhao, S., Li, T., Qiao, W., Zhang, H., Zhang, B., He, J., Bian, J., Zheng, L., Su, L., Xu, J.: High-power passively Q-switched 2 µm all-solid-state laser based on a Bi2Te3 saturable absorber. Photon. Res. 5 (5), 461–466 (2017)

RIGHTS & PERMISSIONS

The Author(s) 2025

AI Summary AI Mindmap
PDF (2071KB)

572

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/