Local measurement of terahertz field-induced second harmonic generation in plasma filaments

Kareem J. Garriga Francis, Xi-Cheng Zhang

PDF(4911 KB)
PDF(4911 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 44. DOI: 10.1007/s12200-023-00095-y
RESEARCH ARTICLE

Local measurement of terahertz field-induced second harmonic generation in plasma filaments

Author information +
History +

Abstract

The concept of Terahertz Field-Induced Second Harmonic (TFISH) Generation is revisited to introduce a single-shot detection scheme based on third order nonlinearities. Focused specifically on the further development of THz plasma-based sources, we begin our research by reimagining the TFISH system to serve as a direct plasma diagnostic. In this work, an optical probe beam is used to mix directly with the strong ponderomotive current associated with laser-induced ionization. A four-wave mixing (FWM) process then generates a strong second-harmonic optical wave because of the mixing of the probe beam with the nonlinear current components oscillating at THz frequencies. The observed conversion efficiency is high enough that for the first time, the TFISH signal appears visible to the human eye. We perform spectral, spatial, and temporal analysis on the detected second-harmonic frequency and show its direct relationship to the nonlinear current. Further, a method to detect incoherent and coherent THz inside plasma filaments is devised using spatio-temporal couplings. The single-shot detection configurations are theoretically described using a combination of expanded FWM models with Kostenbauder and Gaussian Q-matrices. We show that the retrieved temporal traces for THz radiation from single- and twocolor laser-induced air-plasma sources match theoretical descriptions very well. High temporal resolution is shown with a detection bandwidth limited only by the spatial extent of the probe laser beam. Large detection bandwidth and temporal characterization is shown for THz radiation confined to under-dense plasma filaments induced by < 100 fs lasers below the relativistic intensity limit.

Graphical abstract

Keywords

Terahertz detection / Plasma characterization / Spectral characterization / Single-shot detection

Cite this article

Download citation ▾
Kareem J. Garriga Francis, Xi-Cheng Zhang. Local measurement of terahertz field-induced second harmonic generation in plasma filaments. Front. Optoelectron., 2023, 16(4): 44 https://doi.org/10.1007/s12200-023-00095-y

References

[1]
Zhang,X.C., Xu,J.: Introduction to THz wave photonics. Springer, Troy (2009)
[2]
Lee,Y.S.: Principles of Terahertz science and technology. Springer (2009)
[3]
Woodward,R.M., Cole,B.E., Wallace,V.P., Pye,R.J., Arnone,D.D., Linfield,E.H., Pepper,M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47 (21), 3853- 3863 (2002)
[4]
Yu,C., Fan,S., Sun,Y., Pickwell-Macpherson,E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33- 45 (2012)
[5]
Cao,Y., Huang,P., Li,X., Ge,W., Hou,D., Zhang,G.: Terahertz spectral unmixing based method for identifying gastric cancer. Phys. Med. Biol. 63 (3), 035016 (2018)
[6]
Wang,L.: Terahertz imaging for breast cancer detection. Sensors (Basel) 21 (19), 1- 17 (2021)
[7]
Cao,Y., Chen,J., Zhang,G., Fan,S., Ge,W., Hu,W., Huang,P., Hou,D., Zheng,S.: Characterization and discrimination of human colorectal cancer cells using terahertz spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 256, 119713 (2021)
[8]
Ok,G., Park,K., Kim,H.J., Chun,H.S., Choi,S.W.: High-speed terahertz imaging toward food quality inspection. Appl. Opt. 53 (7), 1406 (2014)
[9]
Ok,G., Park,K., Chun,H.S., Chang,H.J., Lee,N., Choi,S.W.: High-performance sub-terahertz transmission imaging system for food inspection. Biomed. Opt. Express 6 (5), 1929 (2015)
[10]
Afsah-Hejri,L., Hajeb,P., Ara,P., Ehsani,R.J.: A comprehensive review on food applications of terahertz spectroscopy and imaging. Compr. Rev. Food Sci. Food Saf. 18 (5), 1563- 1621 (2019)
[11]
Zahid,A.T., Abbas,H., Imran,M.A., Qaraqe,K.A., Alomainy,A., Cumming,D.R.S., Abbasi,Q.H.: Characterization and water content estimation method of living plant leaves using terahertz waves. Appl. Sci. (Basel) 9 (14), 2781 (2019)
[12]
Bondar,N.P., Kovalenko,I.L., Avgustinovich,D.F., Khamoyan,A.G., Kudryavtseva,N.N.: Behavioral effect of terahertz waves in male mice. Bull. Exp. Biol. Med. 145 (4), 401- 405 (2008)
[13]
Shen,J., Zhu,Z., Zhang,Z., Guo,C., Zhang,J., Ren,G., Chen,L., Li,S., Zhao,H.: Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 247, 119141 (2021)
[14]
Qi,M., Liu,R., Li,B., Wang,S., Fan,R., Zhao,X., Xu,D.: Behavioral effect of terahertz waves in C57BL/6 mice. Biosensors (Basel) 12 (2), 401- 406 (2022)
[15]
Zhang,X.C., Shkurinov,A., Zhang,Y.: Extreme terahertz science. Nat. Photonics 11 (1), 16- 18 (2017)
[16]
Fülöp,J.A., Tzortzakis,S., Kampfrath,T.: Laser-driven strongfield terahertz sources. Adv. Opt. Mater. 8 (3), 1900681- 1900706 (2020)
[17]
Fedorov,V.Y., Tzortzakis,S.: Powerful terahertz waves from long-wavelength infrared laser filaments. Light Sci. Appl. 9 (1), 186- 202 (2020)
[18]
Koulouklidis,A.D., Gollner,C., Shumakova,V., Fedorov,V.Y., Pugžlys,A., Baltuška,A., Tzortzakis,S.: Observation of extremely efficient terahertz generation from mid-infrared twocolor laser filaments. Nat. Commun.Commun. 11 (1), 292 (2020)
[19]
Pak,T., Rezaei-Pandari,M., Kim,S.B., Lee,G., Wi,D.H., Hojbota,C.I., Mirzaie,M., Kim,H., Sung,J.H., Lee,S.K., Kang,C., Kim,K.Y.: Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons. Light Sci. Appl. 12 (1), 37 (2023)
[20]
Bosch,R.A.: Double-pulse THz radiation bursts from laserplasma acceleration. Phys. Plasmas 13 (11), 113107- 113115 (2006)
[21]
Nanni,E.A., Huang,W.R., Hong,K.H., Ravi,K., Fallahi,A., Moriena,G., Dwayne Miller,R.J., Kärtner,F.X.: Terahertzdriven linear electron acceleration. Nat. Commun.Commun. 6 (1), 8486 (2015)
[22]
Adli,E., Ahuja,A., Apsimon,O., Apsimon,R., Bachmann,A.M., Barrientos,D., Batsch,F., Bauche,J., Berglyd Olsen,V.K., Bernardini,M., Bohl,T., Bracco,C., Braunmüller,F., Burt,G., Buttenschön,B., Caldwell,A., Cascella,M., Chappell,J., Chevallay,E., Chung,M., Cooke,D., Damerau,H., Deacon,L., Deubner,L.H., Dexter,A., Doebert,S., Farmer,J., Fedosseev,V.N., Fiorito,R., Fonseca,R.A., Friebel,F., Garolfi,L., Gessner,S., Gorgisyan,I., Gorn,A.A., Granados,E., Grulke,O., Gschwendtner,E., Hansen,J., Helm,A., Henderson,J.R., Hüther,M., Ibison,M., Jensen,L., Jolly,S., Keeble,F., Kim,S.Y., Kraus,F., Li,Y., Liu,S., Lopes,N., Lotov,K.V., Maricalva Brun,L., Martyanov,M., Mazzoni,S., Medina Godoy,D., Minakov,V.A., Mitchell,J., Molendijk,J.C., Moody,J.T., Moreira,M., Muggli,P., Öz,E., Pasquino,C., Pardons,A., Peña Asmus,F., Pepitone,K., Perera,A., Petrenko,A., Pitman,S., Pukhov,A., Rey,S., Rieger,K., Ruhl,H., Schmidt,J.S., Shalimova,I.A., Sherwood,P., Silva,L.O., Soby,L., Sosedkin,A.P., Speroni,R., Spitsyn,R.I., Tuev,P.V., Turner,M., Velotti,F., Verra,L., Verzilov,V.A., Vieira,J., Welsch,C.P., Williamson,B., Wing,M., Woolley,B., Xia,G.: Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561 (7723), 363- 367 (2018)
[23]
Salén,P., Basini,M., Bonetti,S., Hebling,J., Krasilnikov,M., Nikitin,A.Y., Shamuilov,G., Tibai,Z., Zhaunerchyk,V., Goryashko,V.: Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836-837 1- 74 (2019)
[24]
Couairon,A., Mysyrowicz,A.: Femtosecond filamentation in transparent media. Phys. Rep. 441 (2-4), 47- 189 (2007)
[25]
Chin,S.L.: Femtosecond laser filamentation. Springer, New York (2010)
[26]
Agrawal,G.: Nonlinear fiber optics. Elsevier Inc, Amsterdam (2012)
[27]
Gupta,D.N.: Optical second-harmonic generation of terahertz field from n-type InSb semiconductors. Plasmonics 16 (2), 419- 424 (2021)
[28]
Fischer,M.P., Riede,A., Gallacher,K., Frigerio,J., Pellegrini,G., Ortolani,M., Paul,D.J., Isella,G., Leitenstorfer,A., Biagioni,P., Brida,D.: Plasmonic mid-infrared third harmonic generation in germanium nanoantennas. Light Sci. Appl. 7 (1), 106 (2018)
[29]
Tielrooij,K.J., Principi,A., Reig,D.S., Block,A., Varghese,S., Schreyeck,S., Brunner,K., Karczewski,G., Ilyakov,I., Ponomaryov,O., de Oliveira,T.V.A.G., Chen,M., Deinert,J.C., Carbonell,C.G., Valenzuela,S.O., Molenkamp,L.W., Kiessling,T., Astakhov,G.V., Kovalev,S.: Milliwatt terahertz harmonic generation from topological insulator metamaterials. Light Sci. Appl. 11 (1), 315 (2022)
[30]
Robert,W.: Boyd: nonlinear optics. Academic Press, USA (2008)
[31]
Hamster,H., Falcone,R.W.: Proposed source of sub-picosecond far infrared radiation. In: Ultrafast phenomena VII,. pp. 125-127. Springer, Berlin (1990)
[32]
Hamster,H., Sullivan,A., Gordon,S., Falcone,R.W.: Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip. TopicsRelat. Interdiscip. Topics 49 (1), 671- 677 (1994)
[33]
Cook,D.J., Hochstrasser,R.M.: Intense terahertz pulses by fourwave rectification in air. Opt. Lett. 25 (16), 1210 (2000)
[34]
Kim,K.Y.: Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Phys. Plasmas 16 (5), 056706 (2009)
[35]
Saxena,S., Bagchi,S., Tayyab,M., Rao,B.S., Kumar,S., Gupta,D.N., Chakera,J.A.: Scaling up and parametric characterization of two-color air plasma terahertz source. Laser Phys. 30 (3), 036002 (2020)
[36]
Wu,Q., Zhang,X.C.: Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67 (24), 3523- 3525 (1995)
[37]
Dai,J., Xie,X., Zhang,X.C.: Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97 (10), 103903- 103907 (2006)
[38]
Tomasino,A., Mazhorova,A., Clerici,M., Peccianti,M., Ho,S.P., Jestin,Y., Pasquazi,A., Markov,A., Jin,X., Piccoli,R., Delprat,S., Chaker,M., Busacca,A., Ali,J., Razzari,L., Morandotti,R.: Solid-state-biased coherent detection of ultra-broadband terahertz pulses. Optica 4 (11), 1358 (2017)
[39]
Tan,Y., Zhao,H., Wang,W.M., Zhang,R., Zhao,Y.J., Zhang,C.L., Zhang,X.C., Zhang,L.L.: Water-based coherent detection of broadband terahertz pulses. Phys. Rev. Lett. 128 (9), 093902 (2022)
[40]
Tong,J., Suo,F., Zhang,T., Huang,Z., Chu,J., Zhang,D.H.: Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. Light Sci. Appl. 10 (1), 58 (2021)
[41]
Sharma,G., Singh,K., Al-Naib,I., Morandotti,R., Ozaki,T.: Terahertz detection using spectral domain interferometry. Opt. Lett. 37 (20), 4338 (2012)
[42]
Nie,Z., Pai,C.H., Hua,J., Zhang,C., Wu,Y., Wan,Y., Li,F., Zhang,J., Cheng,Z., Su,Q., Liu,S., Ma,Y., Ning,X., He,Y., Lu,W., Chu,H.H., Wang,J., Mori,W.B., Joshi,C.: Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat. Photonics 12 (8), 489- 494 (2018)
[43]
Liao,G., Li,Y., Liu,H., Scott,G.G., Neely,D., Zhang,Y., Zhu,B., Zhang,Z., Armstrong,C., Zemaityte,E., Bradford,P., Huggard,P.G., Rusby,D.R., McKenna,P., Brenner,C.M., Woolsey,N.C., Wang,W., Sheng,Z., Zhang,J.: Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc. Natl. Acad. Sci. U.S.A. 116 (10), 3994- 3999 (2019)
[44]
Wu,X., Kong,D., Hao,S., Dai,M., Liu,S., Wang,J., Ren,Z.: 13.5-mJ THz radiation from lithium niobates. In: 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). pp. 1. IEEE (2022)
[45]
Jiang,Z., Zhang,X.C.: Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett. 72 (16), 1945- 1947 (1998)
[46]
Matlis,N.H., Plateau,G.R., van Tilborg,J., Leemans,W.P.: Single- shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation. J. Opt. Soc. Am. B 28 (1), 23 (2011)
[47]
Shan,J., Weling,A.S., Knoesel,E., Bartels,L., Bonn,M., Nahata,A., Reider,G.A., Heinz,T.F.: Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling. Opt. Lett. 25 (6), 426 (2000)
[48]
Kawada,Y., Yasuda,T., Takahashi,H., Aoshima,S.: Real-time measurement of temporal waveforms of a terahertz pulse using a probe pulse with a tilted pulse front. Opt. Lett. 33 (2), 180 (2008)
[49]
Teo,S.M., Ofori-Okai,B.K., Werley,C.A., Nelson,K.A.: Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev. Sci. Instrum.Instrum. 86 (5), 051301 (2015)
[50]
Roussel,E., Szwaj,C., Evain,C., Steffen,B., Gerth,C., Jalali,B., Bielawski,S.: Phase diversity electro-optic sampling: a new approach to single-shot terahertz waveform recording. Light Sci. Appl. 11 (1), 14 (2022)
[51]
Akturk,S., Gu,X., Gabolde,P., Trebino,R.: The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams. Opt. Express 13 (21), 8642- 8661 (2005)
[52]
Aktürk,S., Gu,X., Gabolde,P., Trebino,R.: First-order spatiotemporal distortions of gaussian pulses and beams. Springer Ser. Opt. Sci. 132, 233- 239 (2007)
[53]
Zhai,Z.H., Zhong,S.C., Li,J., Zhu,L.G., Meng,K., Li,J., Liu,Q., Peng,Q.X., Li,Z.R., Zhao,J.H.: Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes. Rev. Sci. Instrum.Instrum. 87 (9), 095101 (2016)
[54]
Dai,J., Liu,J., Zhang,X.C.: Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma. IEEE J. Sel. Top. Quantum Electron. 17 (1), 183- 190 (2011)
[55]
Bigio,I.J., Finn,R.S., Ward,J.F.: Electric-field induced harmonic generation as a probe of the focal region of a laser beam. Appl. Opt. 14 (2), 336 (1975)
[56]
Kikuchi,K., Tada,K.: Theory of electric field-induced optical second harmonic generation in semiconductors. Opt. Quantum Electron. 12 (3), 199- 205 (1980)
[57]
Bethune,D.S.: Optical second-harmonic generation in atomic vapors with focused beams. Phys. Rev. A Gen. Phys. 23 (6), 3139- 3151 (1981)
[58]
Dogariu,A., Goldberg,B.M., O’Byrne,S., Miles,R.B.: Speciesindependent femtosecond localized electric field measurement. Phys. Rev. Appl. 7 (2), 024024 (2017)
[59]
Chng,T.L., Orel,I.S., Starikovskaia,S.M., Adamovich,I.V.: Electric field induced second harmonic (E-FISH) generation for characterization of fast ionization wave discharges at moderate and low pressures. Plasma Sources Sci. Technol. 28 (4), 045004 (2019)
[60]
Smail,G., Trinh,M.T., Makhal,K., Yang,D.S., Kim,J., Rand,S.C.: Observation and theory of magneto-electric field-induced second harmonic generation. In: Conference on Lasers and Electro- Optics. p. SW4G.2. Optica Publishing Group, Washington, D.C. (2020)
[61]
Fujii,T., Sato,M., Nakamura,S., Kumada,A., Miki,M., Oishi,Y.: Electric-field-induced second-harmonic generation using high-intensity femtosecond laser pulses over the observable optical breakdown threshold. Opt. Lett. 46 (2), 238 (2021)
[62]
Orr,K., Yang,X., Gulko,I., Adamovich,I.V.: Formation and propagation of ionization waves during ns pulse breakdown in plane-to-plane geometry. Plasma Sour. Sci. Technol. 29 (12), 125022 (2020)
[63]
Raskar,S., Orr,K., Adamovich,I.V., Chng,T.L., Starikovskaia,S.: Spatially enhanced electric field induced second harmonic (SEEFISH) generation for measurements of electric field distributions in high-pressure plasmas. In: AIAA SCITECH 2022 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia. (2022)
[64]
Tomasino,A., Piccoli,R., Jestin,Y., Delprat,S., Chaker,M., Peccianti,M., Clerici,M., Busacca,A., Razzari,L., Morandotti,R.: Invited article: ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit. APL Photonics 3 (11), 110805 (2018)
[65]
Cornet,M., Degert,J., Abraham,E., Freysz,E.: Terahertz-fieldinduced second harmonic generation through Pockels effect in zinc telluride crystal. Opt. Lett. 39 (20), 5921 (2014)
[66]
Degert,J., Cornet,M., Abraham,E., Freysz,E.: Simple and distortion- free optical sampling of terahertz pulses via heterodyne detection schemes. J. Opt. Soc. Am. B 33 (10), 2045 (2016)
[67]
Li,C.Y., Seletskiy,D.V., Yang,Z., Sheik-Bahae,M.: Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias. Opt. Express 23 (9), 11436- 11443 (2015)
[68]
Du,H.W., Dong,J.M., Liu,Y., Shi,C.C., Wu,J.W., Peng,X.Y.: A coherent detection technique via optically biased field for broadband terahertz radiation. Rev. Sci. Instrum.Instrum. 88 (9), 093104 (2017)
[69]
Xie,X.: THz wave air photonics and its applications. (2007)
[70]
Wang,T., Iwaszczuk,K., Wrisberg,E.A., Denning,E.V., Jepsen,P.U.: Linearity of air-biased coherent detection for terahertz timedomain spectroscopy. Int. J. Infrared Millim. Terahertz Waves 37 (6), 592- 604 (2016)
[71]
Zhang,L.L., Wang,W.M., Wu,T., Feng,S.J., Kang,K., Zhang,C.L., Zhang,Y., Li,Y.T., Sheng,Z.M., Zhang,X.C.: Strong terahertz radiation from a liquid-water line. Phys. Rev. Appl. 12 (1), 1 (2019)
[72]
Le,J., Su,Y., Tian,C., Kung,A.H., Shen,Y.R.: A novel scheme for ultrashort terahertz pulse generation over a gapless wide spectral range: Raman-resonance-enhanced four-wave mixing. Light Sci. Appl. 12 (1), 34 (2023)
[73]
Becker,A., Aközbek,N., Vijayalakshmi,K., Oral,E., Bowden,C.M., Chin,S.L.: Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73 (3), 287- 290 (2001)
[74]
Kosareva,O.G., Liu,W., Panov,N.A., Bernhardt,J., Ji,Z., Sharifi,M., Li,R., Xu,Z., Liu,J., Wang,Z., Ju,J., Lu,X., Jiang,Y., Leng,Y., Liang,X., Kandidov,V.P., Chin,S.L.: Can we reach very high intensity in air with femtosecond PW laser pulses? Laser Phys. 19 (8), 1776- 1792 (2009)
[75]
Liu,X.L., Lu,X., Liu,X., Xi,T.T., Liu,F., Ma,J.L., Zhang,J.: Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Opt. Express 18 (25), 26007 (2010)
[76]
Kiran,P.P., Bagchi,S., Arnold,C.L., Krishnan,S.R., Kumar,G.R., Couairon,A.: Filamentation without intensity clamping. Opt. Express 18 (20), 21504 (2010)
[77]
Li,H., Chu,W., Zang,H., Xu,H., Cheng,Y., Chin,S.L.: Critical power and clamping intensity inside a filament in a flame. Opt. Express 24 (4), 3424 (2016)
[78]
Sainte-Marie,A., Gobert,O., Quéré,F.: Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4 (10), 1298 (2017)
[79]
Froula,D.H., Turnbull,D., Davies,A.S., Kessler,T.J., Haberberger,D., Palastro,J.P., Bahk,S.W., Begishev,I.A., Boni,R., Bucht,S., Katz,J., Shaw,J.L.: Spatiotemporal control of laser intensity. Nat. Photonics 12 (5), 262- 265 (2018)
[80]
Turnbull,D., Franke,P., Katz,J., Palastro,J.P., Begishev,I.A., Boni,R., Bromage,J., Milder,A.L., Shaw,J.L., Froula,D.H.: Ionization waves of arbitrary velocity. Phys. Rev. Lett. 120 (22), 225001 (2018)
[81]
Turnbull,D., Bucht,S., Davies,A., Haberberger,D., Kessler,T., Shaw,J.L., Froula,D.H.: Raman amplification with a flying focus. Phys. Rev. Lett. 120 (2), 024801 (2018)
[82]
Jolly,S.W., Gobert,O., Quéré,F.: Spatio-temporal characterization of ultrashort laser beams: a tutorial. J. Opt. 22 (10), 103501 (2020)
[83]
Jolly,S.W., Gobert,O., Jeandet,A., Quéré,F.: Controlling the velocity of a femtosecond laser pulse using refractive lenses. Opt. Express 28 (4), 4888 (2020)
[84]
Pedrotti,F.L., Pedrotti,L.M., Pedrotti,L.S.: Introduction to optics. Addison-Wesley, Boston (2006)
[85]
Goodman,J.W.: Introduction to Fourier optics. McGraw-Hill, USA (2005)
[86]
Gibbon,P.: Introduction to plasma physics. In: CAS-CERN Accelerator School: Plasma Wake Acceleration 2014, Proceedings. pp. 51- 65 (2014)
[87]
Zhao,J., Chu,W., Wang,Z., Peng,Y., Gong,C., Lin,L., Zhu,Y., Liu,W., Cheng,Y., Zhuang,S., Xu,Z.: Strong spatial confinement of terahertz wave inside femtosecond laser filament. ACS Photonics 3 (12), 2338- 2343 (2016)
[88]
Mitryukovskiy,S.: Coherent secondary radiation from femtosecond laser filaments, (2014).
[89]
Luo,Q., Liu,W., Chin,S.L.: Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76 (3), 337- 340 (2003)
[90]
Wang,T.J., Daigle,J.F., Ju,J., Yuan,S., Li,R., Chin,S.L.: Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air. Phys. Rev. AA 88 (5), 053429 (2013)
[91]
Liu,Y., Brelet,Y., Point,G., Houard,A., Mysyrowicz,A.: Selfseeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21 (19), 22791 (2013)
[92]
Xu,H., Lötstedt,E., Iwasaki,A., Yamanouchi,K.: Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nat. Commun.Commun. 6 (1), 8347 (2015)
[93]
Xu,H., Lötstedt,E., Ando,T., Iwasaki,A., Yamanouchi,K.: Alignment-dependent population inversion in N2+ in intense fewcycle laser fields. Phys. Rev. A (Coll. Park) 96 (4), 041401 (2017)
[94]
Li,H., Yao,D., Wang,S., Fu,Y., Xu,H.: Air lasing: phenomena and mechanisms. Chin. Phys. B 28 (11), 114204 (2019)
[95]
Maaswinkel,A.G.M.: Second harmonic generation accompanying linear mode conversion in a laser-produced plasma. Opt. Commun. 35 (2), 236- 238 (1980)
[96]
Jha,P., Agrawal,E.: Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma. Phys. Plasmas 21 (5), 053107 (2014)
[97]
Li,G., Ni,J., Xie,H., Zeng,B., Yao,J., Chu,W., Zhang,H., Jing,C., He,F., Xu,H., Cheng,Y., Xu,Z.: Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses. Opt. Lett. 39 (4), 961- 964 (2014)
[98]
Huang,C.K., Zhang,C., Nie,Z., Marsh,K.A., Clayton,C.E., Joshi,C.: Conservation of angular momentum in second harmonic generation from under-dense plasmas. Commun. Phys.. Phys. 3 (1), 213 (2020)
[99]
Ardaneh,K., Hassan,M., Morel,B., Meyer,R., Giust,R., Couairon,A., Bonnaud,G., Courvoisier,F.: Femtosecond laserinduced sub-wavelength plasma inside dielectrics. II. Secondharmonic generation. Phys. Plasmas 29 (7), 072716 (2022)
[100]
Miyazaki,K., Sato,T., Kashiwagi,H.: Interaction of high-power laser pulses with atomic media. II. Optical second-harmonic generation. Phys. Rev. A Gen. Phys. 23 (3), 1358- 1364 (1981)
[101]
Giulietti,D., Banfi,G.P., Deha,I., Giulietti,A., Lucchesi,M., Nocera,L., Zun,C.Z.: Second harmonic generation in underdense plasma. Laser Part. Beams 6 (2), 141- 147 (1988)
[102]
Batani,D., Bianconi,F., Giulietti,A., Giulietti,D., Nocera,L.: Second harmonic polarization and conversion efficiency in laser produced sparks. Opt. Commun. 70 (1), 38- 43 (1989)
[103]
Engers,T., Fendel,W., Schüler,H., Schulz,H., von der Linde,D.: Second-harmonic generation in plasmas produced by femtosecond laser pulses. Phys. Rev. A 43 (8), 4564- 4567 (1991)
[104]
von der Linde,D., Schulz,H., Engers,T., Schüler,H.: Second harmonic generation in plasmas produced by intense femtosecond laser pulses. IEEE J. Quantum Electron. 28 (10), 2388- 2397 (1992)
[105]
Liu,X., Umstadter,D., Esarey,E., Ting,A.: Harmonic generation by an intense laser pulse in neutral and ionized gases. IEEE Trans. Plasma Sci. 21 (1), 90- 94 (1993)
[106]
Qin,Y.D., Yang,H., Zhu,C.J., Gong,Q.: Intense femtosecond laser-induced second-harmonic generation in atmosphericpressure air. Appl. Phys. B 71 (4), 581- 584 (2000)
[107]
Beresna,M., Kazansky,P.G., Svirko,Y., Barkauskas,M., Danielius,R.: High average power second harmonic generation in air. Appl. Phys. Lett. 95 (12), 121502 (2009)
[108]
Rodriguez,G., Valenzuela,A.R., Yellampalle,B., Schmitt,M.J., Kim,K.Y.: In-line holographic imaging and electron density extraction of ultrafast ionized air filaments. J. Opt. Soc. Am. B 25 (12), 1988 (2008)
[109]
Bodrov,S., Bukin,V., Tsarev,M., Murzanev,A., Garnov,S., Aleksandrov,N., Stepanov,A.: Plasma filament investigation by transverse optical interferometry and terahertz scattering. Opt. Express 19 (7), 6829 (2011)
[110]
Oh,T.I., You,Y.S., Jhajj,N., Rosenthal,E.W., Milchberg,H.M., Kim,K.Y.: Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems. New J. Phys. 15 (7), 075002 (2013)
[111]
Zheng,H., Yin,F., Wang,T.J., Liu,Y., Wei,Y., Zhu,B., Zhou,K., Leng,Y.: Time-resolved measurements of electron density and plasma diameter of 1 kHz femtosecond laser filament in air. Chin. Opt. Lett. 20 (9), 093201 (2022)
[112]
Xie,X., Dai,J., Zhang,X.C.: Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96 (7), 075005 (2006)
[113]
Garriga Francis,K.J., Pac Chong,M.L., Zhang,X.C.: Observation of strong terahertz field-induced second harmonic generation in plasma filaments. Opt. Lett. 47 (23), 6297- 6300 (2022)
[114]
Fu,S.Y., Garriga Francis,K.J., Pac Chong,M.L., Zhang,X.C.: Enhanced second harmonic generation in laser-induced air plasma. Opt. Lett. 48 (12), 3199 (2023)
[115]
Wen,H., Daranciang,D., Lindenberg,A.M.: High-speed alloptical terahertz polarization switching by a transient plasma phase modulator. Appl. Phys. Lett. 96 (16), 161103 (2010)
[116]
Minami,Y., Nakajima,M., Suemoto,T.: Effect of preformed plasma on terahertz-wave emission from the plasma generated by two-color laser pulses. Phys. Rev. AA 83 (2), 023828 (2011)
[117]
Das,J., Yamaguchi,M.: Terahertz wave excitation from preexisting air plasma. J. Opt. Soc. Am. B 30 (6), 1595 (2013)
[118]
He,B., Nan,J., Li,M., Yuan,S., Zeng,H.: Terahertz modulation induced by filament interaction. Opt. Lett. 42 (5), 967 (2017)
[119]
Ponomareva,E.A., Tcypkin,A.N., Smirnov,S.V., Putilin,S.E., Yiwen,E., Kozlov,S.A., Zhang,X.C.: Double-pump technique— one step closer towards efficient liquid-based THz sources. Opt. Express 27 (22), 32855 (2019)
[120]
Wu,T., Dong,L., Zhang,S., Zhao,H., Kang,K., Zhang,C., Zhang,R., Zhao,Y., Zhang,L.: Modulation of terahertz wave generation from laser-induced filament based on a preionized plasma. Opt. Commun. 444, 137- 141 (2019)
[121]
Dai,J., Clough,B., Ho,I.C., Lu,X., Liu,J., Zhang,X.C.: Recent progresses in terahertz wave air photonics. IEEE Trans. Terahertz Sci. Technol. 1 (1), 274- 281 (2011)
[122]
Pettine,J., Padmanabhan,P., Sirica,N., Prasankumar,R.P., Taylor,A.J., Chen,H.T.: Ultrafast terahertz emission from emerging symmetry-broken materials. Light Sci. Appl. 12 (1), 133 (2023)
[123]
Orfanidis,S.J.: Electromagnetic Waves and Antennas. (2014)
[124]
Chen,Y., Marceau,C., Théberge,F., Châteauneuf,M., Dubois,J., Chin,S.L.: Polarization separator created by a filament in air. Opt. Lett. 33 (23), 2731 (2008)
[125]
Béjot,P., Petit,Y., Bonacina,L., Kasparian,J., Moret,M., Wolf,J.P.: Ultrafast gaseous “half-wave plate. ” Opt. Express 16 (10), 7564 (2008)
[126]
Borhanian,J.: Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons. Phys. Plasmas 21 (6), 062312 (2014)
[127]
Yuan,S., Li,M., Feng,Y., Li,H., Zheng,L., Chin,S.L., Zeng,H.: Filament-induced ultrafast birefringence in gases. J. Phys. At. Mol. Opt. Phys. 48 (9), 094018 (2015)
[128]
van der Veen,M.A., Vermoortele,F., De Vos,D.E., Verbiest,T.: Point group symmetry determination via observables revealed by polarized second-harmonic generation microscopy: (1) theory. Anal. Chem. 84 (15), 6378- 6385 (2012)
[129]
Wu,L., Patankar,S., Morimoto,T., Nair,N.L., Thewalt,E., Little,A., Analytis,J.G., Moore,J.E., Orenstein,J.: Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13 (4), 350- 355 (2017)
[130]
Grishunin,K.A., Ilyin,N.A., Sherstyuk,N.E., Mishina,E.D., Kimel,A., Mukhortov,V.M., Ovchinnikov,A.V., Chefonov,O.V., Agranat,M.B.: THz electric field-induced second harmonic generation in ferroelectric thin film BaSrTiÜ3. In: 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). pp. 2841-2844. IEEE (2017)
[131]
Wang,J., Jin,K., Gu,J., Wan,Q., Yao,H., Yang,G.: Direct evidence of correlation between the second harmonic generation anisotropy patterns and the polarization orientation of perovskite ferroelectric. Sci. Rep. 7 (1), 9051 (2017)
[132]
Michel,P., Divol,L., Turnbull,D., Moody,J.D.: Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas. Phys. Rev. Lett. 113 (20), 205001 (2014)
[133]
Turnbull,D., Michel,P., Chapman,T., Tubman,E., Pollock,B.B., Chen,C.Y., Goyon,C., Ross,J.S., Divol,L., Woolsey,N., Moody,J.D.: High power dynamic polarization control using plasma photonics. Phys. Rev. Lett. 116 (20), 205001 (2016)
[134]
Zhao,J., Zhang,Y., Wang,Z., Chu,W., Zeng,B., Liu,W., Cheng,Y., Xu,Z.: Propagation of terahertz wave inside femtosecond laser filament in air. Laser Phys. Lett. 11 (9), 095302 (2014)
[135]
Zhong,H., Karpowicz,N., Zhang,X.C.: Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett. 88 (26), 261103 (2006)
[136]
Kosareva,O., Esaulkov,M., Panov,N., Andreeva,V., Shipilo,D., Solyankin,P., Demircan,A., Babushkin,I., Makarov,V., Morgner,U., Shkurinov,A., Savel’ev,A.: Polarization control of terahertz radiation from two-color femtosecond gas breakdown plasma. Opt. Lett. 43 (1), 90 (2018)
[137]
Couairon,A., Mysyrowicz,A.: Femtosecond filamentation in air. In: Series in chemical physics,. pp. 235-258. Springer, Berlin (2006)
[138]
Mou,S., Rubano,A., Yu,Q., Paparo,D.: Terahertz unipolar polarimetry by second-harmonic generation in air. Appl. Phys. Lett. 123 (7), 071101- 071111 (2023)
[139]
Bodrov,S.B., Sergeev,Y.A., Korytin,A.I., Burova,E.A., Stepanov,A.N.: Terahertz pulse induced femtosecond optical second harmonic generation in transparent media with cubic nonlinearity. J. Opt. Soc. Am. B 37 (3), 789 (2020)
[140]
Bodrov,S.B., Stepanov,A.N., Burova,E.A., Sergeev,Y.A., Korytin,A.I., Bakunov,M.I.: Terahertz-field-induced second harmonic generation for nonlinear optical detection of interfaces buried in transparent materials. Appl. Phys. Lett. 119 (22), 221109 (2021)
[141]
Yu,Z., Sun,L., Zhang,N., Wang,J., Qi,P., Guo,L., Sun,Q., Liu,W., Misawa,H.: Anti-correlated plasma and THz pulse generation during two-color laser filamentation in air. Ultrafast Sci. 2022, 1- 7 (2022)
[142]
Nomura,Y., Shirai,H., Fuji,T.: Frequency-resolved optical gating capable of carrier-envelope phase determination. Nat. Commun. Commun. 4 (1), 2820 (2013)
[143]
Kostenbauder,A.G.: Ray-pulse matrices: a rational treatment for dispersive optical systems. IEEE J. Quantum Electron. 26 (6), 1148- 1157 (1990)
[144]
Fernandes Vieira,M.A.: Analysis of spatio-temporal distortions in chirped pulse amplification lasers. (2009)
[145]
Gu,X., Akturk,S., Trebino,R.: Spatial chirp in ultrafast optics. Opt. Commun. 242 (4-6), 599- 604 (2004)
[146]
Akturk,S., Gu,X., Bowlan,P., Trebino,R.: Spatio-temporal couplings in ultrashort laser pulses. J. Opt. 12 (9), 093001 (2010)
[147]
Bor,Z.: Femtosecond pulse front tilt caused by angular dispersion. Opt. Eng. 32 (10), 2501 (1993)
[148]
Hebling,J.: Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron. 28 (12), 1759- 1763 (1996)

RIGHTS & PERMISSIONS

2023 The Author(s)
AI Summary AI Mindmap
PDF(4911 KB)

Accesses

Citations

Detail

Sections
Recommended

/