Topological photonic crystals: a review

Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU

PDF(5403 KB)
PDF(5403 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (1) : 50-72. DOI: 10.1007/s12200-019-0949-7
REVIEW ARTICLE
REVIEW ARTICLE

Topological photonic crystals: a review

Author information +
History +

Abstract

The field of topological photonic crystals has attracted growing interest since the inception of optical analog of quantum Hall effect proposed in 2008. Photonic band structures embraced topological phases of matter, have spawned a novel platform for studying topological phase transitions and designing topological optical devices. Here, we present a brief review of topological photonic crystals based on different material platforms, including all-dielectric systems, metallic materials, optical resonators, coupled waveguide systems, and other platforms. Furthermore, this review summarizes recent progress on topological photonic crystals, such as higher-order topological photonic crystals, non-Hermitian photonic crystals, and nonlinear photonic crystals. These studies indicate that topological photonic crystals as versatile platforms have enormous potential applications in maneuvering the flow of light.

Keywords

topological photonic crystals / topological phase transitions / non-Hermitian photonics / higher-order topological photonic crystals

Cite this article

Download citation ▾
Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review. Front. Optoelectron., 2020, 13(1): 50‒72 https://doi.org/10.1007/s12200-019-0949-7

References

[1]
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
CrossRef Pubmed Google scholar
[2]
John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
CrossRef Pubmed Google scholar
[3]
Wang B, Cappelli M A. A plasma photonic crystal bandgap device. Applied Physics Letters, 2016, 108(16): 161101
CrossRef Google scholar
[4]
Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
CrossRef Pubmed Google scholar
[5]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef Pubmed Google scholar
[6]
Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358
CrossRef Pubmed Google scholar
[7]
Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 1980, 45(6): 494–497
CrossRef Google scholar
[8]
Thouless D J, Kohmoto M, Nightingale M P, den Nijs M. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 1982, 49(6): 405–408
CrossRef Google scholar
[9]
Kohmoto M. Topological invariant and the quantization of the Hall conductance. Annals of Physics, 1985, 160(2): 343–354
CrossRef Google scholar
[10]
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
CrossRef Pubmed Google scholar
[11]
Bernevig B A, Zhang S C. Quantum spin Hall effect. Physical Review Letters, 2006, 96(10): 106802
CrossRef Pubmed Google scholar
[12]
Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
CrossRef Pubmed Google scholar
[13]
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766–770
CrossRef Pubmed Google scholar
[14]
Haldane F D, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Physical Review Letters, 2008, 100(1): 013904
CrossRef Pubmed Google scholar
[15]
Wang Z, Chong Y D, Joannopoulos J D, Soljacić M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters, 2008, 100(1): 013905
CrossRef Pubmed Google scholar
[16]
Wang Z, Chong Y, Joannopoulos J D, Soljacić M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461(7265): 772–775
CrossRef Pubmed Google scholar
[17]
Hafezi M, Demler E A, Lukin M D, Taylor J M. Robust optical delay lines with topological protection. Nature Physics, 2011, 7(11): 907–912
CrossRef Google scholar
[18]
Umucalılar R O, Carusotto I. Artificial gauge field for photons in coupled cavity arrays. Physical Review A, 2011, 84(4): 043804
CrossRef Google scholar
[19]
Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G. Photonic topological insulators. Nature Materials, 2013, 12(3): 233–239
CrossRef Pubmed Google scholar
[20]
Nalitov A V, Malpuech G, Terças H, Solnyshkov D D. Spin-orbit coupling and the optical spin Hall effect in photonic graphene. Physical Review Letters, 2015, 114(2): 026803
CrossRef Pubmed Google scholar
[21]
Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material. Physical Review Letters, 2015, 114(22): 223901
CrossRef Pubmed Google scholar
[22]
Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nature Materials, 2016, 15(5): 542–548
CrossRef Pubmed Google scholar
[23]
Dong J W, Chen X D, Zhu H, Wang Y, Zhang X. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16(3): 298–302
CrossRef Pubmed Google scholar
[24]
Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Physical Review Letters, 2018, 120(21): 217401
CrossRef Pubmed Google scholar
[25]
Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photonics, 2012, 6(11): 782–787
CrossRef Google scholar
[26]
Lumer Y, Plotnik Y, Rechtsman M C, Segev M. Self-localized states in photonic topological insulators. Physical Review Letters, 2013, 111(24): 243905
CrossRef Pubmed Google scholar
[27]
Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A. Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196–200
CrossRef Pubmed Google scholar
[28]
Titum P, Lindner N H, Rechtsman M C, Refael G. Disorder-induced Floquet topological insulators. Physical Review Letters, 2015, 114(5): 056801
CrossRef Pubmed Google scholar
[29]
Leykam D, Rechtsman M C, Chong Y D. Anomalous topological phases and unpaired dirac cones in photonic Floquet topological insulators. Physical Review Letters, 2016, 117(1): 013902
CrossRef Pubmed Google scholar
[30]
Maczewsky L J, Zeuner J M, Nolte S, Szameit A. Observation of photonic anomalous Floquet topological insulators. Nature Communications, 2017, 8(1): 13756
CrossRef Pubmed Google scholar
[31]
Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, Thomson R R. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nature Communications, 2017, 8(1): 13918
CrossRef Pubmed Google scholar
[32]
Mukherjee S, Chandrasekharan H K, Öhberg P, Goldman N, Thomson R R. State-recycling and time-resolved imaging in topological photonic lattices. Nature Communications, 2018, 9(1): 4209
CrossRef Pubmed Google scholar
[33]
Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C. Topological Floquet edge states in periodically curved waveguides. Physical Review A, 2018, 98(1): 013855
CrossRef Google scholar
[34]
Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S. Anomalous Floquet insulators. Physical Review B, 2019, 99(19): 195133
CrossRef Google scholar
[35]
Ma T, Shvets G. All-Si valley-Hall photonic topological insulator. New Journal of Physics, 2016, 18(2): 025012
CrossRef Google scholar
[36]
Wu X, Meng Y, Tian J, Huang Y, Xiang H, Han D, Wen W. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nature Communications, 2017, 8(1): 1304
CrossRef Pubmed Google scholar
[37]
Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B. Three-dimensional all-dielectric photonic topological insulator. Nature Photonics, 2017, 11(2): 130–136
CrossRef Google scholar
[38]
Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H. Realization of a three-dimensional photonic topological insulator. Nature, 2019, 565(7741): 622–626
CrossRef Pubmed Google scholar
[39]
Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M. Dirac semimetal in three dimensions. Physical Review Letters, 2012, 108(14): 140405
CrossRef Pubmed Google scholar
[40]
Yang B J, Nagaosa N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nature Communications, 2014, 5(1): 4898
CrossRef Pubmed Google scholar
[41]
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343(6173): 864–867
CrossRef Pubmed Google scholar
[42]
Yang B, Guo Q, Tremain B, Barr L E, Gao W, Liu H, Béri B, Xiang Y, Fan D, Hibbins A P, Zhang S. Direct observation of topological surface-state arcs in photonic metamaterials. Nature Communications, 2017, 8(1): 97
CrossRef Pubmed Google scholar
[43]
Li F, Huang X, Lu J, Ma J, Liu Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nature Physics, 2018, 14(1): 30–34
CrossRef Google scholar
[44]
Burkov A A, Hook M D, Balents L. Topological nodal semimetals. Physical Review B, 2011, 84(23): 235126
CrossRef Google scholar
[45]
Yan Z, Wang Z. Tunable Weyl points in periodically driven nodal line semimetals. Physical Review Letters, 2016, 117(8): 087402
CrossRef Pubmed Google scholar
[46]
He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F, Liu Z. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61–64
CrossRef Pubmed Google scholar
[47]
Adair R, Chase L L, Payne S A. Nonlinear refractive index of optical crystals. Physical Review B, 1989, 39(5): 3337–3350
CrossRef Pubmed Google scholar
[48]
Berger V. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
CrossRef Google scholar
[49]
Mingaleev S F, Kivshar Y S. Self-trapping and stable localized modes in nonlinear photonic crystals. Physical Review Letters, 2001, 86(24): 5474–5477
CrossRef Pubmed Google scholar
[50]
Soljačić M, Luo C, Joannopoulos J D, Fan S. Nonlinear photonic crystal microdevices for optical integration. Optics Letters, 2003, 28(8): 637–639
CrossRef Pubmed Google scholar
[51]
Fleischer J W, Segev M, Efremidis N K, Christodoulides D N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 2003, 422(6928): 147–150
CrossRef Pubmed Google scholar
[52]
Soljačić M, Joannopoulos J D. Enhancement of nonlinear effects using photonic crystals. Nature Materials, 2004, 3(4): 211–219
CrossRef Pubmed Google scholar
[53]
Haddad L H, Weaver C M, Carr L D. The nonlinear Dirac equation in Bose–Einstein condensates: I. Relativistic solitons in armchair nanoribbon optical lattices. New Journal of Physics, 2015, 17(6): 063033
CrossRef Google scholar
[54]
Hadad Y, Khanikaev A B, Alù A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Physical Review B, 2016, 93(15): 155112
CrossRef Google scholar
[55]
Leykam D, Chong Y D. Edge solitons in nonlinear-photonic topological insulators. Physical Review Letters, 2016, 117(14): 143901
CrossRef Pubmed Google scholar
[56]
Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nature Physics, 2017, 13(2): 146–151
CrossRef Google scholar
[57]
Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan Borgnia , Preiss P M, Grusdt F, Kaufman A M, Greiner M. Microscopy of the interacting Harper-Hofstadter model in the two-body limit. Nature, 2017, 546(7659): 519–523
CrossRef Pubmed Google scholar
[58]
Zhou X, Wang Y, Leykam D, Chong Y D. Optical isolation with nonlinear topological photonics. New Journal of Physics, 2017, 19(9): 095002
CrossRef Google scholar
[59]
Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S. Nonlinear control of electromagnetic topological edge states. Physical Review Letters, 2018, 121(16): 163901
CrossRef Pubmed Google scholar
[60]
Rajesh C, Georgios T. Self-induced topological transition in phononic crystals by nonlinearity management. 2019, arXiv:1904. 09466v1
[61]
Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 1998, 80(24): 5243–5246
CrossRef Google scholar
[62]
Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U. Parity-time synthetic photonic lattices. Nature, 2012, 488(7410): 167–171
CrossRef Pubmed Google scholar
[63]
Yang Y, Peng C, Liang Y, Li Z, Noda S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Physical Review Letters, 2014, 113(3): 037401
CrossRef Pubmed Google scholar
[64]
Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M. Topological nature of optical bound states in the continuum. Physical Review Letters, 2014, 113(25): 257401
CrossRef Pubmed Google scholar
[65]
Malzard S, Poli C, Schomerus H. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Physical Review Letters, 2015, 115(20): 200402
CrossRef Pubmed Google scholar
[66]
Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A. Observation of a topological transition in the bulk of a non-Hermitian system. Physical Review Letters, 2015, 115(4): 040402
CrossRef Pubmed Google scholar
[67]
Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljačić M. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354–358
CrossRef Pubmed Google scholar
[68]
Cerjan A, Raman A, Fan S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Physical Review Letters, 2016, 116(20): 203902
CrossRef Pubmed Google scholar
[69]
Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres. Physical Review Letters, 2017, 118(26): 267401
CrossRef Pubmed Google scholar
[70]
Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry. Nature Photonics, 2017, 11(12): 752–762
CrossRef Google scholar
[71]
Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B. Lasing action from photonic bound states in continuum. Nature, 2017, 541(7636): 196–199
CrossRef Pubmed Google scholar
[72]
Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A. Topologically protected bound states in photonic parity-time-symmetric crystals. Nature Materials, 2017, 16(4): 433–438
CrossRef Pubmed Google scholar
[73]
El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N. Non-Hermitian physics and PT symmetry. Nature Physics, 2018, 14(1): 11–19
CrossRef Google scholar
[74]
Kawabata K, Shiozaki K, Ueda M. Anomalous helical edge states in a non-Hermitian Chern insulator. Physical Review B, 2018, 98(16): 165148
CrossRef Google scholar
[75]
Kunst F K, Edvardsson E, Budich J C, Bergholtz E J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Physical Review Letters, 2018, 121(2): 026808
CrossRef Pubmed Google scholar
[76]
Lieu S. Topological phases in the non-Hermitian Su-Schrieffer-Heeger model. Physical Review B, 2018, 97(4): 045106
CrossRef Google scholar
[77]
Pan M, Zhao H, Miao P, Longhi S, Feng L. Photonic zero mode in a non-Hermitian photonic lattice. Nature Communications, 2018, 9(1): 1308
CrossRef Pubmed Google scholar
[78]
Qi B, Zhang L, Ge L. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Physical Review Letters, 2018, 120(9): 093901
CrossRef Pubmed Google scholar
[79]
Shen H, Zhen B, Fu L. Topological band theory for non-Hermitian Hamiltonians. Physical Review Letters, 2018, 120(14): 146402
CrossRef Pubmed Google scholar
[80]
Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling. Physical Review. B, 2018, 98(21): 214101
CrossRef Google scholar
[81]
Yao S, Song F, Wang Z. Non-Hermitian Chern bands. Physical Review Letters, 2018, 121(13): 136802
CrossRef Pubmed Google scholar
[82]
Yao S, Wang Z. Edge states and topological invariants of non-Hermitian systems. Physical Review Letters, 2018, 121(8): 086803
CrossRef Pubmed Google scholar
[83]
Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W. Direct observation of corner states in second-order topological photonic crystal slabs. 2018, arXiv:1812.08326
[84]
Ezawa M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Physical Review Letters, 2018, 120(2): 026801
CrossRef Pubmed Google scholar
[85]
Ezawa M. Minimal models for Wannier-type higher-order topological insulators and phosphorene. Physical Review B, 2018, 98(4): 045125
CrossRef Google scholar
[86]
Ezawa M. Magnetic second-order topological insulators and semimetals. Physical Review B, 2018, 97(15): 155305
CrossRef Google scholar
[87]
Ezawa M. Higher-order topological electric circuits and topological corner resonance on the breathing kagome and pyrochlore lattices. Physical Review B, 2018, 98(20): 201402
CrossRef Google scholar
[88]
Geier M, Trifunovic L, Hoskam M, Brouwer P W. Second-order topological insulators and superconductors with an order-two crystalline symmetry. Physical Review B, 2018, 97(20): 205135
CrossRef Google scholar
[89]
Khalaf E. Higher-order topological insulators and superconductors protected by inversion symmetry. Physical Review B, 2018, 97(20): 205136
CrossRef Google scholar
[90]
Kunst F K, van Miert G, Bergholtz E J. Lattice models with exactly solvable topological hinge and corner states. Physical Review B, 2018, 97(24): 241405
CrossRef Google scholar
[91]
Peterson C W, Benalcazar W A, Hughes T L, Bahl G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 2018, 555(7696): 346–350
CrossRef Pubmed Google scholar
[92]
Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T.Higher-order topological insulators. Science Advances, 2018, 4(6): eaat0346
[93]
van Miert G, Ortix C. Higher-order topological insulators protected by inversion and rotoinversion symmetries. Physical Review B, 2018, 98(8): 081110
CrossRef Google scholar
[94]
Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F. Second-order photonic topological insulator with corner states. Physical Review B, 2018, 98(20): 205147
CrossRef Google scholar
[95]
Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Physical Review Letters, 2019, 122(23): 233903
CrossRef Google scholar
[96]
Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I. Photonic crystal nanocavity based on a topological corner state. 2018, arXiv:1812.10171
[97]
Călugăru D, Juričić V, Roy B. Higher-order topological phases: a general principle of construction. Physical Review B, 2019, 99(4): 041301
CrossRef Google scholar
[98]
Hu H, Huang B, Zhao E, Liu W V. Dynamical singularities of Floquet higher-order topological insulators. 2019, arXiv:1905. 03727v1
[99]
Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
CrossRef Google scholar
[100]
Kleinman D A. Nonlinear dielectric polarization in optical media. Physical Review, 1962, 126(6): 1977–1979
CrossRef Google scholar
[101]
Adler E. Nonlinear optical frequency polarization in a dielectric. Physical Review, 1964, 134(3A): A728–A733
CrossRef Google scholar
[102]
Miller R C. Optical second harmonic generation in piezoelectric crystals. Applied Physics Letters, 1964, 5(1): 17–19
CrossRef Google scholar
[103]
Fejer M M, Magel G, Jundt D H, Byer R L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE Journal of Quantum Electronics, 1992, 28(11): 2631–2654
CrossRef Google scholar
[104]
Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient blue second–harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
CrossRef Google scholar
[105]
Celebrano M, Wu X, Baselli M, Großmann S, Biagioni P, Locatelli A, De Angelis C, Cerullo G, Osellame R, Hecht B, Duò L, Ciccacci F, Finazzi M. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnology, 2015, 10(5): 412–417
CrossRef Pubmed Google scholar
[106]
Rubin M H, Klyshko D N, Shih Y H, Sergienko A V. Theory of two-photon entanglement in type-II optical parametric down-conversion. Physical Review A, 1994, 50(6): 5122–5133
CrossRef Pubmed Google scholar
[107]
Monken C H, Ribeiro P S, Pádua S. Transfer of angular spectrum and image formation in spontaneous parametric down-conversion. Physical Review A, 1998, 57(4): 3123–3126
CrossRef Google scholar
[108]
Arnaut H H, Barbosa G A. Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Physical Review Letters, 2000, 85(2): 286–289
CrossRef Pubmed Google scholar
[109]
Howell J C, Bennink R S, Bentley S J, Boyd R W. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Physical Review Letters, 2004, 92(21): 210403
CrossRef Pubmed Google scholar
[110]
Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Physical Review Letters, 2016, 116(14): 143601
CrossRef Pubmed Google scholar
[111]
Carriles R, Schafer D N, Sheetz K E, Field J J, Cisek R, Barzda V, Sylvester A W, Squier J A. Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Review of Scientific Instruments, 2009, 80(8): 081101
CrossRef Pubmed Google scholar
[112]
Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Letters, 2016, 16(7): 4635–4640
CrossRef Pubmed Google scholar
[113]
Sipe J E, Moss D J, van Driel H. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Physical Review B, 1987, 35(3): 1129–1141
CrossRef Pubmed Google scholar
[114]
Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
CrossRef Google scholar
[115]
Soavi G, Wang G, Rostami H, Purdie D G, De Fazio D, Ma T, Luo B, Wang J, Ott A K, Yoon D, Bourelle S A, Muench J E, Goykhman I, Dal Conte S, Celebrano M, Tomadin A, Polini M, Cerullo G, Ferrari A C. Broadband, electrically tunable third-harmonic generation in graphene. Nature Nanotechnology, 2018, 13(7): 583–588
CrossRef Pubmed Google scholar
[116]
Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 1985, 55(22): 2409–2412
CrossRef Pubmed Google scholar
[117]
Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J, Helmerson K, Rolston S, Phillips W D. Four-wave mixing with matter waves. Nature, 1999, 398(6724): 218–220
CrossRef Google scholar
[118]
Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I P, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C. Four-wave mixing experiments with extreme ultraviolet transient gratings. Nature, 2015, 520(7546): 205–208
CrossRef Pubmed Google scholar
[119]
Singh S K, Abak M K, Tasgin M E. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths. Physical Review B, 2016, 93(3): 035410
CrossRef Google scholar
[120]
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
CrossRef Pubmed Google scholar
[121]
Alam M Z, De Leon I, Boyd R W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 2016, 352(6287): 795–797
CrossRef Pubmed Google scholar
[122]
Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I. Topological photonics. Reviews of Modern Physics, 2019, 91(1): 015006
CrossRef Google scholar
[123]
Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1802, 1984(392): 45–57
[124]
Pancharatnam S. Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences, Section A, Physical Sciences, 1956, 44(6): 398–417
CrossRef Google scholar
[125]
Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljačić M. Experimental observation of large Chern numbers in photonic crystals. Physical Review Letters, 2015, 115(25): 253901
CrossRef Pubmed Google scholar
[126]
Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M. Experimental observation of Weyl points. Science, 2015, 349(6248): 622–624
CrossRef Pubmed Google scholar
[127]
Xiao M, Lin Q, Fan S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Physical Review Letters, 2016, 117(5): 057401
CrossRef Pubmed Google scholar
[128]
Lin Q, Xiao M, Yuan L, Fan S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nature Communications, 2016, 7(1): 13731
CrossRef Pubmed Google scholar
[129]
Fang C, Weng H, Dai X, Fang Z. Topological nodal line semimetals. Chinese Physics B, 2016, 25(11): 117106
CrossRef Google scholar
[130]
Lu L, Fu L, Joannopoulos J D, Soljačić M. Weyl points and line nodes in gyroid photonic crystals. Nature Photonics, 2013, 7(4): 294–299
CrossRef Google scholar
[131]
Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 2018, 359(6379): 1013–1016
CrossRef Pubmed Google scholar
[132]
Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications, 2014, 5(1): 5782
CrossRef Pubmed Google scholar
[133]
Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
CrossRef Pubmed Google scholar
[134]
Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nature Nanotechnology, 2019, 14(1): 31–34
CrossRef Pubmed Google scholar
[135]
Chen X D, Zhao F L, Chen M, Dong J W. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Physical Review B, 2017, 96(2): 020202
CrossRef Google scholar
[136]
Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q, Dong J W. Tunable electromagnetic flow control in valley photonic crystal waveguides. Physical Review Applied, 2018, 10(4): 044002
CrossRef Google scholar
[137]
He M, Zhang L, Wang H. Two-dimensional photonic crystal with ring degeneracy and its topological protected edge states. Scientific Reports, 2019, 9(1): 3815
CrossRef Pubmed Google scholar
[138]
Ma T, Khanikaev A B, Mousavi S H, Shvets G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Physical Review Letters, 2015, 114(12): 127401
CrossRef Pubmed Google scholar
[139]
Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nature Communications, 2016, 7(1): 13038
CrossRef Pubmed Google scholar
[140]
Chen Y, Chen H, Cai G. High transmission in a metal-based photonic crystal. Applied Physics Letters, 2018, 112(1): 013504
CrossRef Google scholar
[141]
El-Kady I, Sigalas M, Biswas R, Ho K, Soukoulis C. Metallic photonic crystals at optical wavelengths. Physical Review B, 2000, 62(23): 15299–15302
CrossRef Google scholar
[142]
Gao F, Gao Z, Shi X, Yang Z, Lin X, Xu H, Joannopoulos J D, Soljačić M, Chen H, Lu L, Chong Y, Zhang B. Probing topological protection using a designer surface plasmon structure. Nature Communications, 2016, 7(1): 11619
CrossRef Pubmed Google scholar
[143]
Gao W, Yang B, Tremain B, Liu H, Guo Q, Xia L, Hibbins A P, Zhang S. Experimental observation of photonic nodal line degeneracies in metacrystals. Nature Communications, 2018, 9(1): 950
CrossRef Pubmed Google scholar
[144]
Gao F, Xue H, Yang Z, Lai K, Yu Y, Lin X, Chong Y, Shvets G, Zhang B. Topologically protected refraction of robust kink states in valley photonic crystals. Nature Physics, 2018, 14(2): 140–144
CrossRef Google scholar
[145]
Karch A. Surface plasmons and topological insulators. Physical Review B, 2011, 83(24): 245432
CrossRef Google scholar
[146]
Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M. Imaging topological edge states in silicon photonics. Nature Photonics, 2013, 7(12): 1001–1005
CrossRef Google scholar
[147]
Mittal S, Ganeshan S, Fan J, Vaezi A, Hafezi M. Measurement of topological invariants in a 2D photonic system. Nature Photonics, 2016, 10(3): 180–183
CrossRef Google scholar
[148]
Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M.Topological insulator laser: theory. Science, 2018, 359(6381): eaar4003
[149]
Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M. Topological insulator laser: experiments. Science, 2018, 359(6381): eaar4005
[150]
Midya B, Zhao H, Feng L. Non-Hermitian photonics promises exceptional topology of light. Nature Communications, 2018, 9(1): 2674
CrossRef Pubmed Google scholar
[151]
Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E. A topological quantum optics interface. Science, 2018, 359(6376): 666–668
CrossRef Pubmed Google scholar
[152]
Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M. Topological protection of biphoton states. Science, 2018, 362(6414): 568–571
CrossRef Pubmed Google scholar
[153]
Piper J R, Fan S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics, 2014, 1(4): 347–353
CrossRef Google scholar
[154]
Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F, Englund D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631
CrossRef Pubmed Google scholar
[155]
Heeger A J, Kivelson S, Schrieffer J R, Su W P. Solitons in conducting polymers. Reviews of Modern Physics, 1988, 60(3): 781–850
CrossRef Google scholar
[156]
Su W P, Schrieffer J R, Heeger A J. Solitons in Polyacetylene. Physical Review Letters, 1979, 42(25): 1698–1701
CrossRef Google scholar
[157]
Miri M-A, Alù A. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
[158]
Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F. Parity-time symmetry in Non-Hermitian complex media. 2018, arXiv:1803.00794
[159]
Lee T E. Anomalous edge state in a non-Hermitian lattice. Physical Review Letters, 2016, 116(13): 133903
CrossRef Pubmed Google scholar
[160]
Ghatak A, Das T. New topological invariants in non-Hermitian systems. Journal of Physics Condensed Matter, 2019, 31(26): 263001
CrossRef Pubmed Google scholar
[161]
St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A. Lasing in topological edge states of a one-dimensional lattice. Nature Photonics, 2017, 11(10): 651–656
CrossRef Google scholar
[162]
Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 2018, 120(11): 113901
CrossRef Pubmed Google scholar
[163]
Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L. Topological hybrid silicon microlasers. Nature Communications, 2018, 9(1): 981
CrossRef Pubmed Google scholar
[164]
Ota Y, Katsumi R, Watanabe K, Iwamoto S, Arakawa Y. Topological photonic crystal nanocavity laser. Communications on Physics, 2018, 1(1): 86
CrossRef Google scholar
[165]
Haldane F D M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Physical Review Letters, 1988, 61(18): 2015–2018
CrossRef Pubmed Google scholar
[166]
Schmidt J, Marques M R G, Botti S, Marques M A L. Recent advances and applications of machine learning in solid-state materials science. NPJ Computational Materials, 2019, 5(1): 83
CrossRef Google scholar
[167]
Pilozzi L, Farrelly F A, Marcucci G, Conti C. Machine learning inrerse problem for topological photonics. Communications Physics, 2018, 1(1): 57
[168]
Long Y, Ren J, Li Y, Chen H. Inverse design of photonic topological state via machine learning. Applied Physics Letters, 2019, 114(18): 181105
CrossRef Google scholar
[169]
Barth C, Becker C. Machine learning classification for field distributions of photonic modes. Communications on Physics, 2018, 1(1): 58
CrossRef Google scholar
[170]
Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878
CrossRef Google scholar
[171]
Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554
CrossRef Google scholar
[172]
Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
CrossRef Google scholar
[173]
Luk’yanchuk B S, Miroshnichenko A E, Kivshar Y S. Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. Journal of Optics, 2013, 15(7): 073001
CrossRef Google scholar
[174]
Gao W, Hu X, Li C, Yang J, Chai Z, Xie J, Gong Q. Fano-resonance in one-dimensional topological photonic crystal heterostructure. Optics Express, 2018, 26(7): 8634–8644
CrossRef Pubmed Google scholar
[175]
Zangeneh-Nejad F, Fleury R. Topological Fano resonances. Physical Review Letters, 2019, 122(1): 014301
CrossRef Pubmed Google scholar
[176]
Liang G Q, Chong Y D. Optical resonator analog of a two-dimensional topological insulator. Physical Review Letters, 2013, 110(20): 203904
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0306200, and 2017YFA0303702) and the National Natural Science Foundation of China (Grant Nos. 11625418, 51732006, and 11890700), as well as the Academic Program Development of Jiangsu Higher Education (PAPD).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5403 KB)

Accesses

Citations

Detail

Sections
Recommended

/