Topological photonic crystals: a review
Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU
Topological photonic crystals: a review
The field of topological photonic crystals has attracted growing interest since the inception of optical analog of quantum Hall effect proposed in 2008. Photonic band structures embraced topological phases of matter, have spawned a novel platform for studying topological phase transitions and designing topological optical devices. Here, we present a brief review of topological photonic crystals based on different material platforms, including all-dielectric systems, metallic materials, optical resonators, coupled waveguide systems, and other platforms. Furthermore, this review summarizes recent progress on topological photonic crystals, such as higher-order topological photonic crystals, non-Hermitian photonic crystals, and nonlinear photonic crystals. These studies indicate that topological photonic crystals as versatile platforms have enormous potential applications in maneuvering the flow of light.
topological photonic crystals / topological phase transitions / non-Hermitian photonics / higher-order topological photonic crystals
[1] |
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
CrossRef
Pubmed
Google scholar
|
[2] |
John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
CrossRef
Pubmed
Google scholar
|
[3] |
Wang B, Cappelli M A. A plasma photonic crystal bandgap device. Applied Physics Letters, 2016, 108(16): 161101
CrossRef
Google scholar
|
[4] |
Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
CrossRef
Pubmed
Google scholar
|
[5] |
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef
Pubmed
Google scholar
|
[6] |
Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358
CrossRef
Pubmed
Google scholar
|
[7] |
Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 1980, 45(6): 494–497
CrossRef
Google scholar
|
[8] |
Thouless D J, Kohmoto M, Nightingale M P, den Nijs M. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 1982, 49(6): 405–408
CrossRef
Google scholar
|
[9] |
Kohmoto M. Topological invariant and the quantization of the Hall conductance. Annals of Physics, 1985, 160(2): 343–354
CrossRef
Google scholar
|
[10] |
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
CrossRef
Pubmed
Google scholar
|
[11] |
Bernevig B A, Zhang S C. Quantum spin Hall effect. Physical Review Letters, 2006, 96(10): 106802
CrossRef
Pubmed
Google scholar
|
[12] |
Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
CrossRef
Pubmed
Google scholar
|
[13] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766–770
CrossRef
Pubmed
Google scholar
|
[14] |
Haldane F D, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Physical Review Letters, 2008, 100(1): 013904
CrossRef
Pubmed
Google scholar
|
[15] |
Wang Z, Chong Y D, Joannopoulos J D, Soljacić M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters, 2008, 100(1): 013905
CrossRef
Pubmed
Google scholar
|
[16] |
Wang Z, Chong Y, Joannopoulos J D, Soljacić M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461(7265): 772–775
CrossRef
Pubmed
Google scholar
|
[17] |
Hafezi M, Demler E A, Lukin M D, Taylor J M. Robust optical delay lines with topological protection. Nature Physics, 2011, 7(11): 907–912
CrossRef
Google scholar
|
[18] |
Umucalılar R O, Carusotto I. Artificial gauge field for photons in coupled cavity arrays. Physical Review A, 2011, 84(4): 043804
CrossRef
Google scholar
|
[19] |
Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G. Photonic topological insulators. Nature Materials, 2013, 12(3): 233–239
CrossRef
Pubmed
Google scholar
|
[20] |
Nalitov A V, Malpuech G, Terças H, Solnyshkov D D. Spin-orbit coupling and the optical spin Hall effect in photonic graphene. Physical Review Letters, 2015, 114(2): 026803
CrossRef
Pubmed
Google scholar
|
[21] |
Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material. Physical Review Letters, 2015, 114(22): 223901
CrossRef
Pubmed
Google scholar
|
[22] |
Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nature Materials, 2016, 15(5): 542–548
CrossRef
Pubmed
Google scholar
|
[23] |
Dong J W, Chen X D, Zhu H, Wang Y, Zhang X. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16(3): 298–302
CrossRef
Pubmed
Google scholar
|
[24] |
Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Physical Review Letters, 2018, 120(21): 217401
CrossRef
Pubmed
Google scholar
|
[25] |
Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photonics, 2012, 6(11): 782–787
CrossRef
Google scholar
|
[26] |
Lumer Y, Plotnik Y, Rechtsman M C, Segev M. Self-localized states in photonic topological insulators. Physical Review Letters, 2013, 111(24): 243905
CrossRef
Pubmed
Google scholar
|
[27] |
Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A. Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196–200
CrossRef
Pubmed
Google scholar
|
[28] |
Titum P, Lindner N H, Rechtsman M C, Refael G. Disorder-induced Floquet topological insulators. Physical Review Letters, 2015, 114(5): 056801
CrossRef
Pubmed
Google scholar
|
[29] |
Leykam D, Rechtsman M C, Chong Y D. Anomalous topological phases and unpaired dirac cones in photonic Floquet topological insulators. Physical Review Letters, 2016, 117(1): 013902
CrossRef
Pubmed
Google scholar
|
[30] |
Maczewsky L J, Zeuner J M, Nolte S, Szameit A. Observation of photonic anomalous Floquet topological insulators. Nature Communications, 2017, 8(1): 13756
CrossRef
Pubmed
Google scholar
|
[31] |
Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, Thomson R R. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nature Communications, 2017, 8(1): 13918
CrossRef
Pubmed
Google scholar
|
[32] |
Mukherjee S, Chandrasekharan H K, Öhberg P, Goldman N, Thomson R R. State-recycling and time-resolved imaging in topological photonic lattices. Nature Communications, 2018, 9(1): 4209
CrossRef
Pubmed
Google scholar
|
[33] |
Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C. Topological Floquet edge states in periodically curved waveguides. Physical Review A, 2018, 98(1): 013855
CrossRef
Google scholar
|
[34] |
Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S. Anomalous Floquet insulators. Physical Review B, 2019, 99(19): 195133
CrossRef
Google scholar
|
[35] |
Ma T, Shvets G. All-Si valley-Hall photonic topological insulator. New Journal of Physics, 2016, 18(2): 025012
CrossRef
Google scholar
|
[36] |
Wu X, Meng Y, Tian J, Huang Y, Xiang H, Han D, Wen W. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nature Communications, 2017, 8(1): 1304
CrossRef
Pubmed
Google scholar
|
[37] |
Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B. Three-dimensional all-dielectric photonic topological insulator. Nature Photonics, 2017, 11(2): 130–136
CrossRef
Google scholar
|
[38] |
Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H. Realization of a three-dimensional photonic topological insulator. Nature, 2019, 565(7741): 622–626
CrossRef
Pubmed
Google scholar
|
[39] |
Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M. Dirac semimetal in three dimensions. Physical Review Letters, 2012, 108(14): 140405
CrossRef
Pubmed
Google scholar
|
[40] |
Yang B J, Nagaosa N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nature Communications, 2014, 5(1): 4898
CrossRef
Pubmed
Google scholar
|
[41] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343(6173): 864–867
CrossRef
Pubmed
Google scholar
|
[42] |
Yang B, Guo Q, Tremain B, Barr L E, Gao W, Liu H, Béri B, Xiang Y, Fan D, Hibbins A P, Zhang S. Direct observation of topological surface-state arcs in photonic metamaterials. Nature Communications, 2017, 8(1): 97
CrossRef
Pubmed
Google scholar
|
[43] |
Li F, Huang X, Lu J, Ma J, Liu Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nature Physics, 2018, 14(1): 30–34
CrossRef
Google scholar
|
[44] |
Burkov A A, Hook M D, Balents L. Topological nodal semimetals. Physical Review B, 2011, 84(23): 235126
CrossRef
Google scholar
|
[45] |
Yan Z, Wang Z. Tunable Weyl points in periodically driven nodal line semimetals. Physical Review Letters, 2016, 117(8): 087402
CrossRef
Pubmed
Google scholar
|
[46] |
He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F, Liu Z. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61–64
CrossRef
Pubmed
Google scholar
|
[47] |
Adair R, Chase L L, Payne S A. Nonlinear refractive index of optical crystals. Physical Review B, 1989, 39(5): 3337–3350
CrossRef
Pubmed
Google scholar
|
[48] |
Berger V. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
CrossRef
Google scholar
|
[49] |
Mingaleev S F, Kivshar Y S. Self-trapping and stable localized modes in nonlinear photonic crystals. Physical Review Letters, 2001, 86(24): 5474–5477
CrossRef
Pubmed
Google scholar
|
[50] |
Soljačić M, Luo C, Joannopoulos J D, Fan S. Nonlinear photonic crystal microdevices for optical integration. Optics Letters, 2003, 28(8): 637–639
CrossRef
Pubmed
Google scholar
|
[51] |
Fleischer J W, Segev M, Efremidis N K, Christodoulides D N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 2003, 422(6928): 147–150
CrossRef
Pubmed
Google scholar
|
[52] |
Soljačić M, Joannopoulos J D. Enhancement of nonlinear effects using photonic crystals. Nature Materials, 2004, 3(4): 211–219
CrossRef
Pubmed
Google scholar
|
[53] |
Haddad L H, Weaver C M, Carr L D. The nonlinear Dirac equation in Bose–Einstein condensates: I. Relativistic solitons in armchair nanoribbon optical lattices. New Journal of Physics, 2015, 17(6): 063033
CrossRef
Google scholar
|
[54] |
Hadad Y, Khanikaev A B, Alù A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Physical Review B, 2016, 93(15): 155112
CrossRef
Google scholar
|
[55] |
Leykam D, Chong Y D. Edge solitons in nonlinear-photonic topological insulators. Physical Review Letters, 2016, 117(14): 143901
CrossRef
Pubmed
Google scholar
|
[56] |
Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nature Physics, 2017, 13(2): 146–151
CrossRef
Google scholar
|
[57] |
Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan Borgnia , Preiss P M, Grusdt F, Kaufman A M, Greiner M. Microscopy of the interacting Harper-Hofstadter model in the two-body limit. Nature, 2017, 546(7659): 519–523
CrossRef
Pubmed
Google scholar
|
[58] |
Zhou X, Wang Y, Leykam D, Chong Y D. Optical isolation with nonlinear topological photonics. New Journal of Physics, 2017, 19(9): 095002
CrossRef
Google scholar
|
[59] |
Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S. Nonlinear control of electromagnetic topological edge states. Physical Review Letters, 2018, 121(16): 163901
CrossRef
Pubmed
Google scholar
|
[60] |
Rajesh C, Georgios T. Self-induced topological transition in phononic crystals by nonlinearity management. 2019, arXiv:1904. 09466v1
|
[61] |
Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 1998, 80(24): 5243–5246
CrossRef
Google scholar
|
[62] |
Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U. Parity-time synthetic photonic lattices. Nature, 2012, 488(7410): 167–171
CrossRef
Pubmed
Google scholar
|
[63] |
Yang Y, Peng C, Liang Y, Li Z, Noda S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Physical Review Letters, 2014, 113(3): 037401
CrossRef
Pubmed
Google scholar
|
[64] |
Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M. Topological nature of optical bound states in the continuum. Physical Review Letters, 2014, 113(25): 257401
CrossRef
Pubmed
Google scholar
|
[65] |
Malzard S, Poli C, Schomerus H. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Physical Review Letters, 2015, 115(20): 200402
CrossRef
Pubmed
Google scholar
|
[66] |
Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A. Observation of a topological transition in the bulk of a non-Hermitian system. Physical Review Letters, 2015, 115(4): 040402
CrossRef
Pubmed
Google scholar
|
[67] |
Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljačić M. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354–358
CrossRef
Pubmed
Google scholar
|
[68] |
Cerjan A, Raman A, Fan S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Physical Review Letters, 2016, 116(20): 203902
CrossRef
Pubmed
Google scholar
|
[69] |
Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres. Physical Review Letters, 2017, 118(26): 267401
CrossRef
Pubmed
Google scholar
|
[70] |
Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry. Nature Photonics, 2017, 11(12): 752–762
CrossRef
Google scholar
|
[71] |
Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B. Lasing action from photonic bound states in continuum. Nature, 2017, 541(7636): 196–199
CrossRef
Pubmed
Google scholar
|
[72] |
Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A. Topologically protected bound states in photonic parity-time-symmetric crystals. Nature Materials, 2017, 16(4): 433–438
CrossRef
Pubmed
Google scholar
|
[73] |
El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N. Non-Hermitian physics and PT symmetry. Nature Physics, 2018, 14(1): 11–19
CrossRef
Google scholar
|
[74] |
Kawabata K, Shiozaki K, Ueda M. Anomalous helical edge states in a non-Hermitian Chern insulator. Physical Review B, 2018, 98(16): 165148
CrossRef
Google scholar
|
[75] |
Kunst F K, Edvardsson E, Budich J C, Bergholtz E J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Physical Review Letters, 2018, 121(2): 026808
CrossRef
Pubmed
Google scholar
|
[76] |
Lieu S. Topological phases in the non-Hermitian Su-Schrieffer-Heeger model. Physical Review B, 2018, 97(4): 045106
CrossRef
Google scholar
|
[77] |
Pan M, Zhao H, Miao P, Longhi S, Feng L. Photonic zero mode in a non-Hermitian photonic lattice. Nature Communications, 2018, 9(1): 1308
CrossRef
Pubmed
Google scholar
|
[78] |
Qi B, Zhang L, Ge L. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Physical Review Letters, 2018, 120(9): 093901
CrossRef
Pubmed
Google scholar
|
[79] |
Shen H, Zhen B, Fu L. Topological band theory for non-Hermitian Hamiltonians. Physical Review Letters, 2018, 120(14): 146402
CrossRef
Pubmed
Google scholar
|
[80] |
Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling. Physical Review. B, 2018, 98(21): 214101
CrossRef
Google scholar
|
[81] |
Yao S, Song F, Wang Z. Non-Hermitian Chern bands. Physical Review Letters, 2018, 121(13): 136802
CrossRef
Pubmed
Google scholar
|
[82] |
Yao S, Wang Z. Edge states and topological invariants of non-Hermitian systems. Physical Review Letters, 2018, 121(8): 086803
CrossRef
Pubmed
Google scholar
|
[83] |
Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W. Direct observation of corner states in second-order topological photonic crystal slabs. 2018, arXiv:1812.08326
|
[84] |
Ezawa M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Physical Review Letters, 2018, 120(2): 026801
CrossRef
Pubmed
Google scholar
|
[85] |
Ezawa M. Minimal models for Wannier-type higher-order topological insulators and phosphorene. Physical Review B, 2018, 98(4): 045125
CrossRef
Google scholar
|
[86] |
Ezawa M. Magnetic second-order topological insulators and semimetals. Physical Review B, 2018, 97(15): 155305
CrossRef
Google scholar
|
[87] |
Ezawa M. Higher-order topological electric circuits and topological corner resonance on the breathing kagome and pyrochlore lattices. Physical Review B, 2018, 98(20): 201402
CrossRef
Google scholar
|
[88] |
Geier M, Trifunovic L, Hoskam M, Brouwer P W. Second-order topological insulators and superconductors with an order-two crystalline symmetry. Physical Review B, 2018, 97(20): 205135
CrossRef
Google scholar
|
[89] |
Khalaf E. Higher-order topological insulators and superconductors protected by inversion symmetry. Physical Review B, 2018, 97(20): 205136
CrossRef
Google scholar
|
[90] |
Kunst F K, van Miert G, Bergholtz E J. Lattice models with exactly solvable topological hinge and corner states. Physical Review B, 2018, 97(24): 241405
CrossRef
Google scholar
|
[91] |
Peterson C W, Benalcazar W A, Hughes T L, Bahl G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 2018, 555(7696): 346–350
CrossRef
Pubmed
Google scholar
|
[92] |
Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T.Higher-order topological insulators. Science Advances, 2018, 4(6): eaat0346
|
[93] |
van Miert G, Ortix C. Higher-order topological insulators protected by inversion and rotoinversion symmetries. Physical Review B, 2018, 98(8): 081110
CrossRef
Google scholar
|
[94] |
Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F. Second-order photonic topological insulator with corner states. Physical Review B, 2018, 98(20): 205147
CrossRef
Google scholar
|
[95] |
Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Physical Review Letters, 2019, 122(23): 233903
CrossRef
Google scholar
|
[96] |
Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I. Photonic crystal nanocavity based on a topological corner state. 2018, arXiv:1812.10171
|
[97] |
Călugăru D, Juričić V, Roy B. Higher-order topological phases: a general principle of construction. Physical Review B, 2019, 99(4): 041301
CrossRef
Google scholar
|
[98] |
Hu H, Huang B, Zhao E, Liu W V. Dynamical singularities of Floquet higher-order topological insulators. 2019, arXiv:1905. 03727v1
|
[99] |
Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
CrossRef
Google scholar
|
[100] |
Kleinman D A. Nonlinear dielectric polarization in optical media. Physical Review, 1962, 126(6): 1977–1979
CrossRef
Google scholar
|
[101] |
Adler E. Nonlinear optical frequency polarization in a dielectric. Physical Review, 1964, 134(3A): A728–A733
CrossRef
Google scholar
|
[102] |
Miller R C. Optical second harmonic generation in piezoelectric crystals. Applied Physics Letters, 1964, 5(1): 17–19
CrossRef
Google scholar
|
[103] |
Fejer M M, Magel G, Jundt D H, Byer R L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE Journal of Quantum Electronics, 1992, 28(11): 2631–2654
CrossRef
Google scholar
|
[104] |
Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient blue second–harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
CrossRef
Google scholar
|
[105] |
Celebrano M, Wu X, Baselli M, Großmann S, Biagioni P, Locatelli A, De Angelis C, Cerullo G, Osellame R, Hecht B, Duò L, Ciccacci F, Finazzi M. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnology, 2015, 10(5): 412–417
CrossRef
Pubmed
Google scholar
|
[106] |
Rubin M H, Klyshko D N, Shih Y H, Sergienko A V. Theory of two-photon entanglement in type-II optical parametric down-conversion. Physical Review A, 1994, 50(6): 5122–5133
CrossRef
Pubmed
Google scholar
|
[107] |
Monken C H, Ribeiro P S, Pádua S. Transfer of angular spectrum and image formation in spontaneous parametric down-conversion. Physical Review A, 1998, 57(4): 3123–3126
CrossRef
Google scholar
|
[108] |
Arnaut H H, Barbosa G A. Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Physical Review Letters, 2000, 85(2): 286–289
CrossRef
Pubmed
Google scholar
|
[109] |
Howell J C, Bennink R S, Bentley S J, Boyd R W. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Physical Review Letters, 2004, 92(21): 210403
CrossRef
Pubmed
Google scholar
|
[110] |
Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Physical Review Letters, 2016, 116(14): 143601
CrossRef
Pubmed
Google scholar
|
[111] |
Carriles R, Schafer D N, Sheetz K E, Field J J, Cisek R, Barzda V, Sylvester A W, Squier J A. Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Review of Scientific Instruments, 2009, 80(8): 081101
CrossRef
Pubmed
Google scholar
|
[112] |
Grinblat G, Li Y, Nielsen M P, Oulton R F, Maier S A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Letters, 2016, 16(7): 4635–4640
CrossRef
Pubmed
Google scholar
|
[113] |
Sipe J E, Moss D J, van Driel H. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Physical Review B, 1987, 35(3): 1129–1141
CrossRef
Pubmed
Google scholar
|
[114] |
Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
CrossRef
Google scholar
|
[115] |
Soavi G, Wang G, Rostami H, Purdie D G, De Fazio D, Ma T, Luo B, Wang J, Ott A K, Yoon D, Bourelle S A, Muench J E, Goykhman I, Dal Conte S, Celebrano M, Tomadin A, Polini M, Cerullo G, Ferrari A C. Broadband, electrically tunable third-harmonic generation in graphene. Nature Nanotechnology, 2018, 13(7): 583–588
CrossRef
Pubmed
Google scholar
|
[116] |
Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 1985, 55(22): 2409–2412
CrossRef
Pubmed
Google scholar
|
[117] |
Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J, Helmerson K, Rolston S, Phillips W D. Four-wave mixing with matter waves. Nature, 1999, 398(6724): 218–220
CrossRef
Google scholar
|
[118] |
Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I P, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C. Four-wave mixing experiments with extreme ultraviolet transient gratings. Nature, 2015, 520(7546): 205–208
CrossRef
Pubmed
Google scholar
|
[119] |
Singh S K, Abak M K, Tasgin M E. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths. Physical Review B, 2016, 93(3): 035410
CrossRef
Google scholar
|
[120] |
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
CrossRef
Pubmed
Google scholar
|
[121] |
Alam M Z, De Leon I, Boyd R W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 2016, 352(6287): 795–797
CrossRef
Pubmed
Google scholar
|
[122] |
Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I. Topological photonics. Reviews of Modern Physics, 2019, 91(1): 015006
CrossRef
Google scholar
|
[123] |
Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1802, 1984(392): 45–57
|
[124] |
Pancharatnam S. Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences, Section A, Physical Sciences, 1956, 44(6): 398–417
CrossRef
Google scholar
|
[125] |
Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljačić M. Experimental observation of large Chern numbers in photonic crystals. Physical Review Letters, 2015, 115(25): 253901
CrossRef
Pubmed
Google scholar
|
[126] |
Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M. Experimental observation of Weyl points. Science, 2015, 349(6248): 622–624
CrossRef
Pubmed
Google scholar
|
[127] |
Xiao M, Lin Q, Fan S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Physical Review Letters, 2016, 117(5): 057401
CrossRef
Pubmed
Google scholar
|
[128] |
Lin Q, Xiao M, Yuan L, Fan S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nature Communications, 2016, 7(1): 13731
CrossRef
Pubmed
Google scholar
|
[129] |
Fang C, Weng H, Dai X, Fang Z. Topological nodal line semimetals. Chinese Physics B, 2016, 25(11): 117106
CrossRef
Google scholar
|
[130] |
Lu L, Fu L, Joannopoulos J D, Soljačić M. Weyl points and line nodes in gyroid photonic crystals. Nature Photonics, 2013, 7(4): 294–299
CrossRef
Google scholar
|
[131] |
Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 2018, 359(6379): 1013–1016
CrossRef
Pubmed
Google scholar
|
[132] |
Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications, 2014, 5(1): 5782
CrossRef
Pubmed
Google scholar
|
[133] |
Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
CrossRef
Pubmed
Google scholar
|
[134] |
Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nature Nanotechnology, 2019, 14(1): 31–34
CrossRef
Pubmed
Google scholar
|
[135] |
Chen X D, Zhao F L, Chen M, Dong J W. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Physical Review B, 2017, 96(2): 020202
CrossRef
Google scholar
|
[136] |
Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q, Dong J W. Tunable electromagnetic flow control in valley photonic crystal waveguides. Physical Review Applied, 2018, 10(4): 044002
CrossRef
Google scholar
|
[137] |
He M, Zhang L, Wang H. Two-dimensional photonic crystal with ring degeneracy and its topological protected edge states. Scientific Reports, 2019, 9(1): 3815
CrossRef
Pubmed
Google scholar
|
[138] |
Ma T, Khanikaev A B, Mousavi S H, Shvets G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Physical Review Letters, 2015, 114(12): 127401
CrossRef
Pubmed
Google scholar
|
[139] |
Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nature Communications, 2016, 7(1): 13038
CrossRef
Pubmed
Google scholar
|
[140] |
Chen Y, Chen H, Cai G. High transmission in a metal-based photonic crystal. Applied Physics Letters, 2018, 112(1): 013504
CrossRef
Google scholar
|
[141] |
El-Kady I, Sigalas M, Biswas R, Ho K, Soukoulis C. Metallic photonic crystals at optical wavelengths. Physical Review B, 2000, 62(23): 15299–15302
CrossRef
Google scholar
|
[142] |
Gao F, Gao Z, Shi X, Yang Z, Lin X, Xu H, Joannopoulos J D, Soljačić M, Chen H, Lu L, Chong Y, Zhang B. Probing topological protection using a designer surface plasmon structure. Nature Communications, 2016, 7(1): 11619
CrossRef
Pubmed
Google scholar
|
[143] |
Gao W, Yang B, Tremain B, Liu H, Guo Q, Xia L, Hibbins A P, Zhang S. Experimental observation of photonic nodal line degeneracies in metacrystals. Nature Communications, 2018, 9(1): 950
CrossRef
Pubmed
Google scholar
|
[144] |
Gao F, Xue H, Yang Z, Lai K, Yu Y, Lin X, Chong Y, Shvets G, Zhang B. Topologically protected refraction of robust kink states in valley photonic crystals. Nature Physics, 2018, 14(2): 140–144
CrossRef
Google scholar
|
[145] |
Karch A. Surface plasmons and topological insulators. Physical Review B, 2011, 83(24): 245432
CrossRef
Google scholar
|
[146] |
Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M. Imaging topological edge states in silicon photonics. Nature Photonics, 2013, 7(12): 1001–1005
CrossRef
Google scholar
|
[147] |
Mittal S, Ganeshan S, Fan J, Vaezi A, Hafezi M. Measurement of topological invariants in a 2D photonic system. Nature Photonics, 2016, 10(3): 180–183
CrossRef
Google scholar
|
[148] |
Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M.Topological insulator laser: theory. Science, 2018, 359(6381): eaar4003
|
[149] |
Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M. Topological insulator laser: experiments. Science, 2018, 359(6381): eaar4005
|
[150] |
Midya B, Zhao H, Feng L. Non-Hermitian photonics promises exceptional topology of light. Nature Communications, 2018, 9(1): 2674
CrossRef
Pubmed
Google scholar
|
[151] |
Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E. A topological quantum optics interface. Science, 2018, 359(6376): 666–668
CrossRef
Pubmed
Google scholar
|
[152] |
Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M. Topological protection of biphoton states. Science, 2018, 362(6414): 568–571
CrossRef
Pubmed
Google scholar
|
[153] |
Piper J R, Fan S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics, 2014, 1(4): 347–353
CrossRef
Google scholar
|
[154] |
Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F, Englund D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631
CrossRef
Pubmed
Google scholar
|
[155] |
Heeger A J, Kivelson S, Schrieffer J R, Su W P. Solitons in conducting polymers. Reviews of Modern Physics, 1988, 60(3): 781–850
CrossRef
Google scholar
|
[156] |
Su W P, Schrieffer J R, Heeger A J. Solitons in Polyacetylene. Physical Review Letters, 1979, 42(25): 1698–1701
CrossRef
Google scholar
|
[157] |
Miri M-A, Alù A. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
|
[158] |
Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F. Parity-time symmetry in Non-Hermitian complex media. 2018, arXiv:1803.00794
|
[159] |
Lee T E. Anomalous edge state in a non-Hermitian lattice. Physical Review Letters, 2016, 116(13): 133903
CrossRef
Pubmed
Google scholar
|
[160] |
Ghatak A, Das T. New topological invariants in non-Hermitian systems. Journal of Physics Condensed Matter, 2019, 31(26): 263001
CrossRef
Pubmed
Google scholar
|
[161] |
St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A. Lasing in topological edge states of a one-dimensional lattice. Nature Photonics, 2017, 11(10): 651–656
CrossRef
Google scholar
|
[162] |
Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 2018, 120(11): 113901
CrossRef
Pubmed
Google scholar
|
[163] |
Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L. Topological hybrid silicon microlasers. Nature Communications, 2018, 9(1): 981
CrossRef
Pubmed
Google scholar
|
[164] |
Ota Y, Katsumi R, Watanabe K, Iwamoto S, Arakawa Y. Topological photonic crystal nanocavity laser. Communications on Physics, 2018, 1(1): 86
CrossRef
Google scholar
|
[165] |
Haldane F D M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Physical Review Letters, 1988, 61(18): 2015–2018
CrossRef
Pubmed
Google scholar
|
[166] |
Schmidt J, Marques M R G, Botti S, Marques M A L. Recent advances and applications of machine learning in solid-state materials science. NPJ Computational Materials, 2019, 5(1): 83
CrossRef
Google scholar
|
[167] |
Pilozzi L, Farrelly F A, Marcucci G, Conti C. Machine learning inrerse problem for topological photonics. Communications Physics, 2018, 1(1): 57
|
[168] |
Long Y, Ren J, Li Y, Chen H. Inverse design of photonic topological state via machine learning. Applied Physics Letters, 2019, 114(18): 181105
CrossRef
Google scholar
|
[169] |
Barth C, Becker C. Machine learning classification for field distributions of photonic modes. Communications on Physics, 2018, 1(1): 58
CrossRef
Google scholar
|
[170] |
Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878
CrossRef
Google scholar
|
[171] |
Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554
CrossRef
Google scholar
|
[172] |
Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
CrossRef
Google scholar
|
[173] |
Luk’yanchuk B S, Miroshnichenko A E, Kivshar Y S. Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. Journal of Optics, 2013, 15(7): 073001
CrossRef
Google scholar
|
[174] |
Gao W, Hu X, Li C, Yang J, Chai Z, Xie J, Gong Q. Fano-resonance in one-dimensional topological photonic crystal heterostructure. Optics Express, 2018, 26(7): 8634–8644
CrossRef
Pubmed
Google scholar
|
[175] |
Zangeneh-Nejad F, Fleury R. Topological Fano resonances. Physical Review Letters, 2019, 122(1): 014301
CrossRef
Pubmed
Google scholar
|
[176] |
Liang G Q, Chong Y D. Optical resonator analog of a two-dimensional topological insulator. Physical Review Letters, 2013, 110(20): 203904
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |