Review on flexible perovskite photodetector: processing and applications

Xuning ZHANG , Xingyue LIU , Yifan HUANG , Bo SUN , Zhiyong LIU , Guanglan LIAO , Tielin SHI

Front. Mech. Eng. ›› 2023, Vol. 18 ›› Issue (2) : 33

PDF (11437KB)
Front. Mech. Eng. ›› 2023, Vol. 18 ›› Issue (2) : 33 DOI: 10.1007/s11465-023-0749-z
REVIEW ARTICLE
REVIEW ARTICLE

Review on flexible perovskite photodetector: processing and applications

Author information +
History +
PDF (11437KB)

Abstract

Next-generation optoelectronics should possess lightweight and flexible characteristics, thus conforming to various types of surfaces or human skins for portable and wearable applications. Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence, aerospace industry, and wise information technology of 120, among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties, remarkable mechanical flexibility, low-cost and low-temperature processing methods. To date, most of the reports have demonstrated the fabrication methods of the perovskite materials, materials engineering, applications in solar cells, light-emitting diodes, lasers, and photodetectors, strategies for device performance enhancement, few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors, which we will give a comprehensive summary, herein. To begin with, a brief introduction to the fabrication methods of perovskite (solution and vapor-based methods), device configurations (photovoltaic, photoconductor, and phototransistor), and performance parameters of the perovskite-based photodetectors are first arranged. Emphatically, processing strategies for photodetectors are presented following, including flexible substrates (i.e., polymer, carbon cloth, fiber, paper, etc.), soft electrodes (i.e., metal-based conductive networks, carbon-based conductive materials, and two-dimensional (2D) conductive materials, etc.), conformal encapsulation (single-layer and multilayer stacked encapsulation), low-dimensional perovskites (0D, 1D, and 2D nanostructures), and elaborate device structures. Typical applications of perovskite-based flexible photodetectors such as optical communication, image sensing, and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level. Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end. The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors, but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing, human life, and health care.

Graphical abstract

Keywords

photodetector / perovskite / flexible / processing / application

Cite this article

Download citation ▾
Xuning ZHANG, Xingyue LIU, Yifan HUANG, Bo SUN, Zhiyong LIU, Guanglan LIAO, Tielin SHI. Review on flexible perovskite photodetector: processing and applications. Front. Mech. Eng., 2023, 18(2): 33 DOI:10.1007/s11465-023-0749-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He Z Q , Wang K , Zhao Z , Zhang T H , Li Y H , Wang L . A wearable flexible acceleration sensor for monitoring human motion. Biosensors, 2022, 12(8): 620

[2]

Wang Y , Sun L J , Wang C , Yang F X , Ren X C , Zhang X T , Dong H L , Hu W P . Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2011, 40(1): 15–18

[3]

Chen X , Pan S , Feng P J , Bian H F , Han X , Liu J H , Guo X , Chen D Z , Ge H X , Shen Q D . Bioinspired ferroelectric polymer arrays as photodetectors with signal transmissible to neuron cells. Advanced Materials, 2016, 28(48): 10684–10691

[4]

Dong T , Simões J , Yang Z C . Flexible photodetector based on 2D materials: processing, architectures, and applications. Advanced Materials Interfaces, 2020, 7(4): 1901657

[5]

Xie C , Yan F . Flexible photodetectors based on novel functional materials. Small, 2017, 13(43): 1701822

[6]

Zhang Y Q . The application of third generation semiconductor in power industry. In: Proceedings of the 10th Chinese Geosynthetics Conference & International Symposium on Civil Engineering and Geosynthetics (ISCEG 2020). Chengdu: E3S Web of Conferences, 2020, 198: 04011

[7]

Li J F , Li C F , Xu M S , Ji Z W , Shi K J , Xu X L , Li H B , Xu X G . “W-shaped” injection current dependence of electroluminescence line width in green InGaN/GaN-based LED grown on silicon substrate. Optics Express, 2017, 25(20): A871–A879

[8]

Zhu D L , Luo W B , Pan T S , Huang S T , Zhang K S , Xie Q , Shuai Y , Wu C G , Zhang W L . Fabrication of large-scale flexible silicon membrane by crystal-ion-slicing technique using BCB bonding layer. Applied Physics A, 2021, 127(9): 672

[9]

Chen X H , Yin L , Lv J , Gross A J , Le M , Gutierrez N G , Li Y , Jeerapan I , Giroud F , Berezovska A , O’Reilly R K , Xu S , Cosnier S , Wang J . Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Advanced Functional Materials, 2019, 29(46): 1905785

[10]

Rajendran V , Mohan A M V , Jayaraman M , Nakagawa T . All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self-powered wearable electronics. Nano Energy, 2019, 65: 104055

[11]

Yin L , Lv J , Wang J . Structural innovations in printed, flexible, and stretchable electronics. Advanced Materials Technologies, 2020, 5(11): 2000694

[12]

Xu Y L , Lin Q Q . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7(1): 011315

[13]

Liang J B , Takatsuki D , Higashiwaki M , Shimizu Y , Ohno Y , Nagai Y , Shigekawa N . Fabrication of β-Ga2O3/Si heterointerface and characterization of interfacial structures for high-power device applications. Japanese Journal of Applied Physics, 2022, 61(SF): SF1001

[14]

Dong H , Ran C X , Gao W Y , Li M J , Xia Y D , Huang W . Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight, 2023, 3(1): 3

[15]

Kim W , Kim H , Yoo T J , Lee J Y , Jo J Y , Lee B H , Sasikala A A , Jung G Y , Pak Y . Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nature Communications, 2022, 13(1): 720

[16]

Roy P , Ghosh A , Barclay F , Khare A , Cuce E . Perovskite solar cells: a review of the recent advances. Coatings, 2022, 12(8): 1089

[17]

He C L , Liu X G . The rise of halide perovskite semiconductors. Light: Science & Applications, 2023, 12(1): 15

[18]

Dey A , Ye J Z , De A , Debroye E , Ha S K , Bladt E , Kshirsagar A S , Wang Z Y , Yin J , Wang Y , Quan L N , Yan F , Gao M Y , Li X M , Shamsi J , Debnath T , Cao M H , Scheel M A , Kumar S , Steele J A , Gerhard M , Chouhan L , Xu K , Wu X G , Li Y X , Zhang Y N , Dutta A , Han C , Vincon I , Rogach A L , Nag A , Samanta A , Korgel B A , Shih C J , Gamelin D R , Son D H , Zeng H B , Zhong H Z , Sun H D , Demir H V , Scheblykin I G , Mora-Seró I , Stolarczyk J K , Zhang J Z , Feldmann J , Hofkens J , Luther J M , Pérez-Prieto J , Li L , Manna L , Bodnarchuk M I , Kovalenko M V , Roeffaers M B J , Pradhan N , Mohammed O F , Bakr O M , Yang P D , Müller-Buschbaum P , Kamat P V , Bao Q L , Zhang Q , Krahne R , Galian R E , Stranks S D , Bals S , Biju V , Tisdale W A , Yan Y , Hoye R L Z , Polavarapu L . State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15(7): 10775–10981

[19]

Ye J Z , Byranvand M M , Martínez C O , Hoye R L Z , Saliba M , Polavarapu L . Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angewandte Chemie, 2021, 133(40): 21804–21828

[20]

Koren E , Lörtscher E , Rawlings C , Knoll A W , Duerig U . Adhesion and friction in mesoscopic graphite contacts. Science, 2015, 348(6235): 679–683

[21]

Liu Y C , Yang Z , Liu S Z . Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Advanced Science, 2018, 5(1): 1700471

[22]

Ng C H , Nishimura K , Ito N , Hamada K , Hirotani D , Wang Z , Yang F , Likubo S , Shen Q , Yoshino K , Minemoto T , Hayase S . Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy, 2019, 58: 130–137

[23]

Brosch M , Deckert M , Rathi S , Takagaki K , Weidner T , Ohl F W , Schmidt B , Lippert M T . An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Journal of Neural Engineering, 2020, 17(4): 046014

[24]

Lee S M , Cho Y , Kim D Y , Chae J S , Choi K C . Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Advanced Optical Materials, 2015, 3(9): 1240–1247

[25]

Wu C Y , Wang Z Y , Liang L , Gui T J , Zhong W , Du R C , Xie C , Wang L , Luo L B . Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small, 2019, 15(19): 1900730

[26]

Chaudhary S , Gupta S K , Singh Negi C M . Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing, 2020, 109: 104916

[27]

Yang Z , Wang M Q , Li J J , Dou J J , Qiu H W , Shao J Y . Spray-coated CsPbBr3 quantum dot films for perovskite photodiodes. ACS Applied Materials & Interfaces, 2018, 10(31): 26387–26395

[28]

Tong S C , Gong C D , Zhang C J , Liu G , Zhang D , Zhou C H , Sun J , Xiao S , He J , Gao Y L , Yang J L . Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15: 389–397

[29]

Tong S C , Wu H , Zhang C J , Li S G , Wang C H , Shen J Q , Xiao S , He J , Yang J L , Sun J , Gao Y L . Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49: 347–354

[30]

Wang Q L , Zhang G N , Zhang H Y , Duan Y Q , Yin Z P , Huang Y A . High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Advanced Functional Materials, 2021, 31(28): 2100857

[31]

Wei H M , Ma H , Tai M Q , Wei Y , Li D Q , Zhao X Y , Lin H , Fan S S , Jiang K L . Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7(55): 34795–34800

[32]

Li W , Xu Y L , Peng J L , Li R M , Song J N , Huang H H , Cui L H , Lin Q Q . Evaporated perovskite thick junctions for X-ray detection. ACS Applied Materials & Interfaces, 2021, 13(2): 2971–2978

[33]

Zhang X N , Liu X Y , Sun B , Ye H B , He C H , Kong L X , Li G L , Liu Z Y , Liao G L . Ultrafast, self-powered, and charge-transport-layer-free ultraviolet photodetectors based on sequentially vacuum-evaporated lead-free Cs2AgBiBr6 thin films. ACS Applied Materials & Interfaces, 2021, 13(30): 35949–35960

[34]

Liu X Y , Liu Z Y , Li J J , Tan X H , Sun B , Fang H , Xi S , Shi T L , Tang Z R , Liao G L . Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. Journal of Materials Chemistry C, 2020, 8(10): 3337–3350

[35]

Tian C C , Wang F , Wang Y P , Yang Z , Chen X J , Mei J J , Liu H Z , Zhao D X . Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Applied Materials & Interfaces, 2019, 11(17): 15804–15812

[36]

Swartwout R , Hoerantner M T , Bulović V . Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2(2): 119–145

[37]

Dai X F , Xu K , Wei F A . Recent progress in perovskite solar cells: the perovskite layer. Beilstein Journal of Nanotechnology, 2020, 11: 51–60

[38]

Huang D W , Xie P F , Pan Z X , Rao H S , Zhong X H . One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(39): 22420–22428

[39]

Wan X J , Yu Z , Tian W M , Huang F Z , Jin S Y , Yang X C , Cheng Y B , Hagfeldt A , Sun L C . Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46: 8–15

[40]

Gong O Y , Seo M K , Choi J H , Kim S Y , Kim D H , Cho I S , Park N G , Han G S , Jung H S . High-performing laminated perovskite solar cells by surface engineering of perovskite films. Applied Surface Science, 2022, 591: 153148

[41]

Das S , Yang B , Gu G , Joshi P C , Ivanov I N , Rouleau C M , Aytug T , Geohegan D B , Xiao K . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2(6): 680–686

[42]

Kim H S , Im S H , Park N G . Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 2014, 118(11): 5615–5625

[43]

Ding X Y , Liu J H , Harris T A L . A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62(7): 2508–2524

[44]

Huang K Q , Li H Y , Zhang C J , Gao Y X , Liu T J , Zhang J , Gao Y L , Peng Y Y , Ding L M , Yang J L . Highly efficient perovskite solar cells processed under ambient conditions using in situ substrate-heating-assisted deposition. Solar RRL, 2019, 3(3): 1800318

[45]

Liu B T , Yang J H , Huang Y S . Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere. Journal of Power Sources, 2021, 500: 229985

[46]

Dehghani A , Jahanshah F , Borman D , Dennis K , Wang J . Design and engineering challenges for digital ink-jet printing on textiles. International Journal of Clothing Science and Technology, 2004, 16(1/2): 262–273

[47]

Khan A , Rahman K , Kim D S , Choi K H . Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. Journal of Materials Processing Technology, 2012, 212(3): 700–706

[48]

Li Y C , Shi B , Xu Q J , Yan L L , Ren N Y , Chen Y L , Han W , Huang Q , Zhao Y , Zhang X D . Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Advanced Energy Materials, 2021, 11(48): 2102046

[49]

Zhang Y L , Huang Y , Zhou C W , Xu Y F , Zhong J Q , Mao H Y . Crystalline structures and optoelectronic properties of orthorhombic CsPbBr3 polycrystalline films grown by the co-evaporation method. Vacuum, 2022, 202: 111219

[50]

Li C W , Song Z N , Chen C , Xiao C X , Subedi B , Harvey S P , Shrestha N , Subedi K K , Chen L , Liu D C , Li Y , Kim Y W , Jiang C S , Heben M J , Zhao D W , Ellingson R J , Podraza N J , Al-Jassim M , Yan Y F . Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5(10): 768–776

[51]

Liang G X , Lan H B , Fan P , Lan C F , Zheng Z H , Peng H X , Luo J T . Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation. Coatings, 2018, 8(8): 256

[52]

Ahmadi M , Wu T , Hu B . A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242

[53]

Chen H , Wang H , Wu J , Wang F , Zhang T , Wang Y F , Liu D T , Li S B , Penty R V , White I H . Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13(8): 1997–2018

[54]

Wang Y , Li D L , Chao L F , Niu T T , Chen Y H , Huang W . Perovskite photodetectors for flexible electronics: recent advances and perspectives. Applied Materials Today, 2022, 28: 101509

[55]

Hao D D , Zou J , Huang J . Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat, 2020, 2(1): 139–169

[56]

Li C L , Li J , Li Z P , Zhang H Y , Dang Y Y , Kong F G . High-performance photodetectors based on nanostructured perovskites. Nanomaterials, 2021, 11(4): 1038

[57]

Wang Y , Zhang X W , Jiang Q , Liu H , Wang D G , Meng J H , You J B , Yin Z G . Interface engineering of high-performance perovskite photodetectors based on PVP/SnO2 electron transport layer. ACS Applied Materials & Interfaces, 2018, 10(7): 6505–6512

[58]

Tian W , Zhou H P , Li L . Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13(41): 1702107

[59]

Miao J L , Zhang F J . Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7(7): 1741–1791

[60]

Yang Z , Dou J J , Wang M Q , Li J J , Huang J , Shao J Y . Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures. Journal of Materials Chemistry C, 2018, 6(25): 6739–6746

[61]

Li C L , Ma Y , Xiao Y F , Shen L , Ding L M . Advances in perovskite photodetectors. InfoMat, 2020, 2(6): 1247–1256

[62]

Li L D , Ye S , Qu J L , Zhou F F , Song J , Shen G Z . Recent advances in perovskite photodetectors for image sensing. Small, 2021, 17(18): 2005606

[63]

Li F , Ma C , Wang H , Hu W J , Yu W L , Sheikh A D , Wu T . Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 2015, 6(1): 8238

[64]

García de Arquer F P , Armin A , Meredith P , Sargent E H . Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2(3): 16100

[65]

Huang J F , Lee J , Nakayama H , Schrock M , Cao D X , Cho K , Bazan G C , Nguyen T Q . Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity. ACS Nano, 2021, 15(1): 1753–1763

[66]

Kim H , Kang J , Ahn H , Jung I H . Contribution of dark current density to the photodetecting properties of thieno[3,4-b]pyrazine-based low bandgap polymers. Dyes and Pigments, 2022, 197: 109910

[67]

De Fazio D , Uzlu B , Torre I , Monasterio-Balcells C , Gupta S , Khodkov T , Bi Y , Wang Z X , Otto M , Lemme M C , Goossens S , Neumaier D , Koppens F H L . Graphene-quantum dot hybrid photodetectors with low dark-current readout. ACS Nano, 2020, 14(9): 11897–11905

[68]

Grimoldi A , Colella L , La Monaca L , Azzellino G , Caironi M , Bertarelli C , Natali D , Sampietro M . Inkjet printed polymeric electron blocking and surface energy modifying layer for low dark current organic photodetectors. Organic Electronics, 2016, 36: 29–34

[69]

Zhao D P , Saputra R M , Song P , Yang Y H , Li Y Z . How graphene strengthened molecular photoelectric performance of solar cells: a photo current-voltage assessment. Solar Energy, 2021, 213: 271–283

[70]

Hu W H , Vael C , Diethelm M , Strassel K , Anantharaman S B , Aribia A , Cremona M , Jenatsch S , Nüesch F , Hany R . On the response speed of narrowband organic optical upconversion devices. Advanced Optical Materials, 2022, 10(17): 2200695

[71]

Bao C X , Chen Z L , Fang Y J , Wei H T , Deng Y H , Xiao X , Li L L , Huang J S . Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Advanced Materials, 2017, 29(39): 1703209

[72]

De Sanctis A , Jones G F , Wehenkel D J , Bezares F , Koppens F H L , Craciun M F , Russo S . Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Science Advances, 2017, 3(5): e1602617

[73]

Zhang J , Li J A , Cheng W , Zhang J H , Zhou Z , Sun X D , Li L L , Liang J G , Shi Y , Pan L J . Challenges in materials and devices of electronic skin. ACS Materials Letters, 2022, 4(4): 577–599

[74]

Han S T , Peng H Y , Sun Q J , Venkatesh S , Chung K S , Lau S C , Zhou Y , Roy V A L . An overview of the development of flexible sensors. Advanced Materials, 2017, 29(33): 1700375

[75]

Jing H , Peng R W , Ma R M , He J , Zhou Y , Yang Z Q , Li C Y , Liu Y , Guo X J , Zhu Y Y , Wang D , Su J , Sun C , Bao W Z , Wang M . Flexible ultrathin single-crystalline perovskite photodetector. Nano Letters, 2020, 20(10): 7144–7151

[76]

Lee Y H , Song I , Kim S H , Park J H , Park S O , Lee J H , Won Y , Cho K , Kwak S K , Oh J H . Perovskite granular wire photodetectors with ultrahigh photodetectivity. Advanced Materials, 2020, 32(32): 2002357

[77]

Tan Q S , Ye G , Zhang Y , Du X J , Liu H N , Xie L M , Zhou Y , Liu N . Vacuum-filtration enabled large-area CsPbBr3 films on porous substrates for flexible photodetectors. Journal of Materials Chemistry C, 2019, 7(43): 13402–13409

[78]

Kim T , Jeong S , Kim K H , Shim H , Kim D , Kim H J . Engineered surface halide defects by two-dimensional perovskite passivation for deformable intelligent photodetectors. ACS Applied Materials & Interfaces, 2022, 14(22): 26004–26013

[79]

Chen Y T , Zhao C Y , Zhang T T , Wu X H , Zhang W J , Ding S J . Flexible and filter-free color-imaging sensors with multicomponent perovskites deposited using enhanced vapor technology. Small, 2021, 17(26): 2007543

[80]

Lédée F , Ciavatti A , Verdi M , Basiricò L , Fraboni B . Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Advanced Optical Materials, 2022, 10(1): 2101145

[81]

Li X M , Yu D J , Chen J , Wang Y , Cao F , Wei Y , Wu Y , Wang L , Zhu Y , Sun Z G , Ji J P , Shen Y L , Sun H D , Zeng H B . Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023

[82]

Liu S T , Liu X H , Zhu Z F , Wang S L , Gu Y , Shan F K , Zou Y S . Improved flexible ZnO/CsPbBr3/Graphene UV photodetectors with interface optimization by solution process. Materials Research Bulletin, 2020, 130: 110956

[83]

Wang Y , Liu W W , Xin W , Zou T T , Zheng X , Li Y S , Xie X H , Sun X J , Yu W L , Liu Z B , Chen S Q , Yang J J , Guo C L . Back-reflected performance-enhanced flexible perovskite photodetectors through substrate texturing with femtosecond laser. ACS Applied Materials & Interfaces, 2020, 12(23): 26614–26623

[84]

Lei J , Gao F , Wang H X , Li J , Jiang J X , Wu X , Gao R R , Yang Z , Liu S Z . Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Solar Energy Materials and Solar Cells, 2018, 187: 1–8

[85]

Sun H X , Lei T Y , Tian W , Cao F R , Xiong J , Li L . Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small, 2017, 13(28): 1701042

[86]

Ding D , Li H N , Yao H Z , Liu L , Tian B B , Su C L , Wang Y , Shi Y M . Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7(31): 9496–9503

[87]

Sun H X , Tian W , Cao F R , Xiong J , Li L . Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Advanced Materials, 2018, 30(21): 1706986

[88]

Kim H J , Oh H , Kim T , Kim D , Park M . Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers. ACS Applied Nano Materials, 2022, 5(1): 1308–1316

[89]

Zheng Q H , Li H X , Zheng Y L , Li Y N , Liu X , Nie S X , Ouyang X H , Chen L H , Ni Y H . Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 2021, 9(13): 4496–4504

[90]

Hassan M , Abbas G , Li N , Afzal A , Haider Z , Ahmed S , Xu X R , Pan C F , Peng Z C . Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Advanced Materials Technologies, 2022, 7(3): 2100773

[91]

Zhang X Z , He D , Yang Q , Atashbar M Z . Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor. Chemical Engineering Journal, 2022, 433: 133751

[92]

Li S X , Xu X L , Yang Y , Xu Y S , Xu Y , Xia H . Highly deformable high-performance paper-based perovskite photodetector with improved stability. ACS Applied Materials & Interfaces, 2021, 13(27): 31919–31927

[93]

Wang W L , Li G L , Jiang Z H , Zhang Y , Hu T J , Yi J , Chu Z Y . Structural, optical and flexible properties of CH3NH3PbI3 perovskite films deposited on paper substrates. Optical Materials, 2021, 114: 110926

[94]

Fang H J , Li J W , Ding J , Sun Y , Li Q , Sun J L , Wang L D , Yan Q F . An origami perovskite photodetector with spatial recognition ability. ACS Applied Materials & Interfaces, 2017, 9(12): 10921–10928

[95]

Yang Y , Hu H J , Chen Z Y , Wang Z Y , Jiang L M , Lu G X , Li X J , Chen R M , Jin J , Kang H C , Chen H X , Lin S , Xiao S Q , Zhao H Y , Xiong R , Shi J , Zhou Q F , Xu S , Chen Y . Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Letters, 2020, 20(6): 4445–4453

[96]

Chen X J , Gao X X , Nomoto A , Shi K , Lin M Y , Hu H J , Gu Y , Zhu Y Z , Wu Z H , Chen X , Wang X Y , Qi B Y , Zhou S , Ding H , Xu S . Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Research, 2021, 14(9): 3248–3252

[97]

Mathur A , Fan H , Maheshwari V . Soft polymer-organolead halide perovskite films for highly stretchable and durable photodetectors with Pt-Au nanochain-based electrodes. ACS Applied Materials & Interfaces, 2021, 13(49): 58956–58965

[98]

Bao C X , Zhu W D , Yang J , Li F M , Gu S , Wang Y R Q , Yu T , Zhu J , Zhou Y , Zou Z G . Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Applied Materials & Interfaces, 2016, 8(36): 23868–23875

[99]

Yang J , Bao C X , Zhu K , Yu T , Xu Q Y . High-performance transparent conducting metal network electrodes for perovksite photodetectors. ACS Applied Materials & Interfaces, 2018, 10(2): 1996–2003

[100]

Lin G M , Lin Y W , Sun B Y . Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV-visible to near-infrared. Nanotechnology, 2022, 33(8): 085204

[101]

Kim J M , Kim S , Choi S H . High-performance n-i-p-type perovskite photodetectors employing graphene-transparent conductive electrodes n-type doped with amine group molecules. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 734–739

[102]

Jang W , Kim B G , Seo S , Shawky A , Kim M S , Kim K , Mikladal B , Kauppinen E I , Maruyama S , Jeon I , Wang D H . Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37: 101081

[103]

Marunchenko A A , Baranov M A , Ushakova E V , Ryabov D R , Pushkarev A P , Gets D S , Nasibulin A G , Makarov S V . Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Advanced Functional Materials, 2022, 32(12): 2109834

[104]

Deng W , Huang H C , Jin H M , Li W , Chu X , Xiong D , Yan W , Chun F J , Xie M L , Luo C , Jin L , Liu C Q , Zhang H T , Deng W L , Yang W Q . All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Advanced Optical Materials, 2019, 7(6): 1801521

[105]

Ren A B , Zou J H , Lai H G , Huang Y X , Yuan L M , Xu H , Shen K , Wang H , Wei S Y , Wang Y F , Hao X , Zhang J Q , Zhao D W , Wu J , Wang Z M . Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7(7): 1901–1911

[106]

Hu J , Xiong X , Guan W , Xiao Z , Tan C , Long H . Durability engineering in all-inorganic CsPbX3 perovskite solar cells: strategies and challenges. Materials Today Chemistry, 2022, 24: 100792

[107]

Wu G B , Liang R , Ge M Z , Sun G X , Zhang Y , Xing G C . Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials, 2022, 34(8): 2105635

[108]

Cao Q , Wang T , Yang J B , Zhang Y X , Li Y K , Pu X Y , Zhao J S , Chen H , Li X Q , Tojiboyev I , Chen J Z , Etgar L , Li X H . Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Advanced Functional Materials, 2022, 32(32): 2201036

[109]

Wu W Q , Wang X D , Han X , Yang Z , Gao G Y , Zhang Y F , Hu J F , Tan Y W , Pan A L , Pan C F . Flexible photodetector arrays based on patterned CH3NH3PbI3‒xClx perovskite film for real-time photosensing and imaging. Advanced Materials, 2019, 31(3): 1805913

[110]

Wu W Q , Han X , Li J , Wang X D , Zhang Y F , Huo Z H , Chen Q S , Sun X D , Xu Z S , Tan Y W , Pan C F , Pan A L . Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Advanced Materials, 2021, 33(9): 2006006

[111]

Zhao F Y , Luo X , Gu C J , Chen J M , Hu Z Y , Peng Y Q . Novel 3D printing encapsulation strategies for perovskite photodetectors. Advanced Materials Technologies, 2022, 7(12): 2200521

[112]

Ma S , Yuan G Z , Zhang Y , Yang N , Li Y J , Chen Q . Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy & Environmental Science, 2022, 15(1): 13–55

[113]

Otero-Martínez C , Fiuza-Maneiro N , Polavarapu L . Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics. ACS Applied Materials & Interfaces, 2022, 14(30): 34291–34302

[114]

Qaid S M H , Ghaithan H M , AlHarbi K K , Al-Asbahi B A , Aldwayyan A S . Enhancement of light amplification of CsPbBr3 perovskite quantum dot films via surface encapsulation by PMMA polymer. Polymers, 2021, 13(15): 2574

[115]

You X , Wu J J , Chi Y W . Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell. Analytical Chemistry, 2019, 91(8): 5058–5066

[116]

Xia B Z , Tu M , Pradhan B , Ceyssens F , Tietze M L , Rubio-Giménez V , Wauteraerts N , Gao Y J , Kraft M , Steele J A , Debroye E , Hofkens J , Ameloot R . Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Advanced Engineering Materials, 2022, 24(1): 2100930

[117]

Bose R , Yin J , Zheng Y Z , Yang C , Gartstein Y N , Bakr O M , Malko A V , Mohammed O F . Gentle materials need gentle fabrication: encapsulation of perovskites by gas-phase alumina deposition. The Journal of Physical Chemistry Letters, 2021, 12(9): 2348–2357

[118]

Takada Y , Tsuji T , Okamoto N , Saito T , Kondo K , Yoshimura T , Fujimura N , Higuchi K , Kitajima A , Oshima A . Aluminum-doped zinc oxide electrode for robust (Pb,La)(Zr,Ti)O3 capacitors: effect of oxide insulator encapsulation and oxide buffer layer. Journal of Materials Science: Materials in Electronics, 2014, 25(5): 2155–2161

[119]

Fuentes-Fernandez E M A , Salomon-Preciado A M , Gnade B E , Quevedo-Lopez M A , Shah P , Alshareef H N . Fabrication of relaxer-based piezoelectric energy harvesters using a sacrificial poly-Si seeding layer. Journal of Electronic Materials, 2014, 43(11): 3898–3904

[120]

Steinmann V , Moro L . Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. Journal of Materials Research, 2018, 33(13): 1925–1936

[121]

Tu S H , Chen M , Wu L M . Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage and reuse in white light-emitting diodes. Chemical Engineering Journal, 2021, 412: 128688

[122]

Rathore S , Singh A . Bending fatigue damage reduction in indium tin oxide (ITO) by polyimide and ethylene vinyl acetate encapsulation for flexible solar cells. Engineering Research Express, 2020, 2(1): 015022

[123]

Luo Z D , Zhang C P , Yang L , Zhang J B . Ambient spray coating of organic-inorganic composite thin films for perovskite solar cell encapsulation. ChemSusChem, 2022, 15(3): e202102008

[124]

Jiang Y , Qiu L B , Juarez-Perez E J , Ono L K , Hu Z H , Liu Z H , Wu Z F , Meng L Q , Wang Q J , Qi Y B . Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4(7): 585–593

[125]

Dong Q S , Chen M , Liu Y H , Eickemeyer F T , Zhao W D , Dai Z H , Yin Y F , Jiang C , Feng J S , Jin S Y , Liu S Z , Zakeeruddin S M , Grätzel M , Padture N P , Shi Y T . Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5(6): 1587–1601

[126]

Shi Y R , Chen C H , Lou Y H , Wang Z K . Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5(20): 7467–7478

[127]

Ye J J , Liu G Z , Jiang L , Zheng H Y , Zhu L Z , Zhang X H , Wang H X , Pan X , Dai S Y . Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407: 427–433

[128]

Wang H P , Li S Y , Liu X Y , Shi Z F , Fang X S , He J H . Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): 2003309

[129]

Jeon Y P , Woo S J , Kim T W . Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Applied Surface Science, 2018, 434: 375–381

[130]

Asuo I M , Fourmont P , Ka I , Gedamu D , Bouzidi S , Pignolet A , Nechache R , Cloutier S G . Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 2019, 15(1): 1804150

[131]

Wu D J , Xu Y C , Zhou H , Feng X , Zhang J Q , Pan X Y , Gao Z , Wang R , Ma G K , Tao L , Wang H B , Duan J X , Wan H Z , Zhang J , Shen L P , Wang H , Zhai T Y . Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat, 2022, 4(9): e12320

[132]

Zheng W , Lin R C , Zhang Z J , Liao Q X , Liu J J , Huang F . An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake. Nanoscale, 2017, 9(34): 12718–12726

[133]

Shen K , Xu H , Li X , Guo J , Sathasivam S , Wang M Q , Ren A B , Choy K L , Parkin I P , Guo Z X , Wu J . Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Advanced Materials, 2020, 32(22): 2000004

[134]

Perumal Veeramalai C , Yang S Y , Wei J Q , Sulaman M , Zhi R N , Saleem M I , Tang Y , Jiang Y R , Zou B S . Porous single-wall carbon nanotube templates decorated with all-inorganic perovskite nanocrystals for ultraflexible photodetectors. ACS Applied Nano Materials, 2020, 3(1): 459–467

[135]

Zheng J L , Luo C Z , Shabbir B , Wang C J , Mao W X , Zhang Y P , Huang Y M , Dong Y M , Jasieniak J J , Pan C X , Bao Q L . Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11(16): 8020–8026

[136]

Wu D J , Zhou H , Song Z H , Zheng M , Liu R H , Pan X Y , Wan H Z , Zhang J , Wang H , Li X M , Zeng H B . Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14(3): 2777–2787

[137]

Deng H , Yang X K , Dong D D , Li B , Yang D , Yuan S J , Qiao K K , Cheng Y B , Tang J , Song H S . Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Letters, 2015, 15(12): 7963–7969

[138]

Oh H , Jin Kim H , Kim S , Kim J A , Kang G M , Park M . Highly flexible and stable perovskite/microbead hybrid photodetectors with improved interfacial light trapping. Applied Surface Science, 2021, 544: 148850

[139]

Saraf R , Fan H , Maheshwari V . Porous perovskite films integrated with Au−Pt nanowire-based electrodes for highly flexible large-area photodetectors. npj Flexible Electronics, 2020, 4(1): 30

[140]

Zhan Y , Cheng Q F , Peng J S , Zhao Y , Vogelbacher F , Lai X T , Wang F Y , Song Y L , Li M Z . Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98: 107254

[141]

Meng X C , Cai Z R , Zhang Y Y , Hu X T , Xing Z , Huang Z Q , Huang Z D , Cui Y J , Hu T , Su M , Liao X F , Zhang L , Wang F Y , Song Y L , Chen Y W . Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11(1): 3016

[142]

Wen X X , Lu Z H , Valdman L , Wang G C , Washington M , Lu T M . High-crystallinity epitaxial Sb2Se3 thin films on mica for flexible near-infrared photodetectors. ACS Applied Materials & Interfaces, 2020, 12(31): 35222–35231

[143]

Schneider D S , Grundmann A , Bablich A , Passi V , Kataria S , Kalisch H , Heuken M , Vescan A , Neumaier D , Lemme M C . Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics, 2020, 7(6): 1388–1395

[144]

Li P , Hao Q Y , Liu J D , Qi D Y , Gan H B , Zhu J Q , Liu F , Zheng Z J , Zhang W J . Flexible photodetectors based on all-solution-processed Cu electrodes and inse nanoflakes with high stabilities. Advanced Functional Materials, 2022, 32(10): 2108261

[145]

Yu G , Liu Z , Xie X M , Ouyang X , Shen G Z . Flexible photodetectors with single-crystalline GaTe nanowires. Journal of Materials Chemistry C, 2014, 2(30): 6104–6110

[146]

An J N , Le T S D , Lim C H J , Tran V T , Zhan Z Y , Gao Y , Zheng L X , Sun G Z , Kim Y J . Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science, 2018, 5(8): 1800496

[147]

Wang Y H , Yang Z B , Li H R , Li S , Zhi Y S , Yan Z Y , Huang X , Wei X H , Tang W H , Wu Z P . Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Applied Materials & Interfaces, 2020, 12(42): 47714–47720

[148]

Tong S C , Sun J , Wang C H , Huang Y L , Zhang C J , Shen J Q , Xie H P , Niu D M , Xiao S , Yuan Y B , He J , Yang J L , Gao Y L . High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Advanced Electronic Materials, 2017, 3(7): 1700058

[149]

Hu X , Zhang X D , Liang L , Bao J , Li S , Yang W L , Xie Y . High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380

[150]

Li C L , Lu J R , Zhao Y , Sun L Y , Wang G X , Ma Y , Zhang S M , Zhou J R , Shen L , Huang W . Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15(44): 1903599

[151]

Leung S F , Ho K T , Kung P K , Hsiao V K S , Alshareef H N , Wang Z L , He J H . A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Advanced Materials, 2018, 30(8): 1704611

[152]

Saidaminov M I , Adinolfi V , Comin R , Abdelhady A L , Peng W , Dursun I , Yuan M J , Hoogland S , Sargent E H , Bakr O M . Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6(1): 8724

[153]

Jung H R , Cho Y , Jo W . UV and visible photodetectors of MAPbBr3 and MAPbCl3 perovskite single crystals via single photocarrier transport design. Advanced Optical Materials, 2022, 10(7): 2102175

[154]

Chen Z L , Li C L , Zhumekenov A A , Zheng X P , Yang C , Yang H Z , He Y , Turedi B , Mohammed O F , Shen L , Bakr O M . Solution-processed visible-blind ultraviolet photodetectors with nanosecond response time and high detectivity. Advanced Optical Materials, 2019, 7(19): 1900506

[155]

Zhou Y , Qiu X , Wan Z A , Long Z H , Poddar S , Zhang Q P , Ding Y C , Chan C L J , Zhang D Q , Zhou K M , Lin Y J , Fan Z Y . Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100: 107516

[156]

Li Y , Shi Z F , Li S , Lei L Z , Ji H F , Wu D , Xu T T , Tian Y T , Li X J . High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. Journal of Materials Chemistry C, 2017, 5(33): 8355–8360

[157]

Cen G B , Liu Y J , Zhao C X , Wang G , Fu Y , Yan G H , Yuan Y , Su C H , Zhao Z J , Mai W J . Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 2019, 15(36): 1902135

[158]

Zhu Z H , Deng W , Li W , Chun F J , Luo C , Xie M L , Pu B , Lin N , Gao B , Yang W Q . Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors. Advanced Materials Interfaces, 2021, 8(6): 2001812

[159]

Gong M G , Sakidja R , Goul R , Ewing D , Casper M , Stramel A , Elliot A , Wu J Z . High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019, 13(2): 1772–1783

[160]

Hou Z L , Liu X Y , Wen G J , Jiang S L . Enhancing the photoelectric performance of the self-powered all vapor-deposited CsPbCl3 ultraviolet photodetectors by a novel cadmium-doping strategy and heterojunction engineering. Solar Energy Materials and Solar Cells, 2023, 251: 112175

[161]

Yang L , Tsai W L , Li C S , Hsu B W , Chen C Y , Wu C I , Lin H W . High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications. ACS Applied Materials & Interfaces, 2019, 11(50): 47054–47062

[162]

Lei L Z , Shi Z F , Li Y , Ma Z Z , Zhang F , Xu T T , Tian Y T , Wu D , Li X J , Du G T . High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. Journal of Materials Chemistry C, 2018, 6(30): 7982–7988

[163]

Shuang Z H , Zhou H , Wu D J , Zhang X H , Xiao B A , Ma G K , Zhang J , Wang H . Low-temperature process for self-powered lead-free Cs2AgBiBr6 perovskite photodetector with high detectivity. Chemical Engineering Journal, 2022, 433: 134544

[164]

Yan G H , Jiang B Q , Xiao Y , Zhao C X , Yuan Y , Liang Z C . Alkali metal ions induced high-quality all-inorganic Cs2AgBiBr6 perovskite films for flexible self-powered photodetectors. Applied Surface Science, 2022, 579: 152198

[165]

Syazwani C J N , Wahab N H A , Sunar N , Ariffin S H S , Wong K Y , Aun Y . Indoor positioning system: a review. International Journal of Advanced Computer Science and Applications, 2022, 13(6): 477–490

[166]

Salih K O M , Rashid T A , Radovanovic D , Bacanin N . A comprehensive survey on the internet of things with the industrial marketplace. Sensors, 2022, 22(3): 730

[167]

Mohsin M J , Murdas I A . Design an outdoor light fidelity (Li-Fi) system based on all-optical OFDM architecture. International Journal of Intelligent Engineering and Systems, 2022, 15(3): 193–204

[168]

Cao Y , Zheng Y F , Wang X , Liu Y B , Liu Y . Research and prospect on key technologies of indoor positioning based on visible light communication. Journal of Physics: Conference Series, 2022, 2160(1): 012074

[169]

Liu R H , Zhang J Q , Zhou H , Song Z H , Song Z N , Grice C R , Wu D J , Shen L P , Wang H . Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Advanced Optical Materials, 2020, 8(8): 1901735

[170]

Huang B , Liu J X , Han Z Y , Gu Y , Yu D J , Xu X B , Zou Y S . High-performance perovskite dual-band photodetectors for potential applications in visible light communication. ACS Applied Materials & Interfaces, 2020, 12(43): 48765–48772

[171]

Mohsan S A H , Mazinani A , Sadiq H B , Amjad H . A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions. Optical and Quantum Electronics, 2022, 54(3): 187

[172]

Schmid S, Ziegler J, Corbellini G, Gross T R, Mangold S. Using consumer led light bulbs for low-cost visible light communication systems. In: Proceedings of the 1st ACM MobiCon Workshop on Visible Light Communication Systems. Hawaii: Association for Computing Machinery, 2014, 9–14

[173]

Dutta A K. Imaging beyond human vision. In: Proceedings of the 8th International Conference on Electrical and Computer Engineering. Dhaka: IEEE, 2014, 224–229

[174]

Nikzad S. High-performance silicon imagers and their applications in astrophysics, medicine and other fields. In: Nikzad S, ed. High Performance Silicon Imaging. Woodhead Publishing, 2014, 411–438

[175]

Lee S M , Biswas R , Li W G , Kang D , Chan L , Yoon J . Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano, 2014, 8(10): 10507–10516

[176]

Lee S Y , Kim S H , Hwang H , Sim J Y , Yang S M . Controlled pixelation of inverse opaline structures towards reflection-mode displays. Advanced Materials, 2014, 26(15): 2391–2397

[177]

Sakanoue T , Mizukami M , Oku S , Yoshimura Y , Abiko M , Tokito S . Fluorosurfactant-assisted photolithography for patterning of perfluoropolymers and solution-processed organic semiconductors for printed displays. Applied Physics Express, 2014, 7(10): 101602

[178]

Xia K L , Wu W Q , Zhu M J , Shen X Y , Yin Z , Wang H M , Li S , Zhang M C , Wang H M , Lu H J , Pan A L , Pan C F , Zhang Y Y . CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65(5): 343–349

[179]

van Breemen A J J M , Ollearo R , Shanmugam S , Peeters B , Peters L C J M , van de Ketterij R L , Katsouras I , Akkerman H B , Frijters C H , Di Giacomo F , Veenstra S , Andriessen R , Janssen R A J , Meulenkamp E A , Gelinck G H . A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nature Electronics, 2021, 4(11): 818–826

[180]

Jang J , Park Y G , Cha E , Ji S , Hwang H , Kim G G , Jin J , Park J U . 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Advanced Materials, 2021, 33(30): 2101093

[181]

Gu L L , Poddar S , Lin Y J , Long Z H , Zhang D Q , Zhang Q P , Shu L , Qiu X , Kam M , Javey A , Fan Z Y . A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581(7808): 278–282

[182]

Li H , Zhang Y , Zhou M , Ding H Y , Zhao L , Jiang T M , Yang H Y , Zhao F , Chen W Q , Teng Z W , Qiu J B , Yu X , Yang Y M , Xu X H . A solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Letters, 2022, 7(9): 2876–2883

[183]

Alfonso C , Garcia-Gonzalez M A , Parrado E , Gil-Rojas J , Ramos-Castro J , Capdevila L . Agreement between two photoplethysmography-based wearable devices for monitoring heart rate during different physical activity situations: a new analysis methodology. Scientific Reports, 2022, 12(1): 15448

[184]

Li C C , Chen H M , Zhang S C , Yang W , Gao M , Huang P Y , Wu M Q , Sun Z Y , Wang J , Wei X . Wearable and biocompatible blood oxygen sensor based on heterogeneously integrated lasers on a laser-induced graphene electrode. ACS Applied Electronic Materials, 2022, 4(4): 1583–1591

RIGHTS & PERMISSIONS

The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (11437KB)

6551

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/