Review on flexible perovskite photodetector: processing and applications

Xuning ZHANG, Xingyue LIU, Yifan HUANG, Bo SUN, Zhiyong LIU, Guanglan LIAO, Tielin SHI

PDF(11437 KB)
PDF(11437 KB)
Front. Mech. Eng. ›› 2023, Vol. 18 ›› Issue (2) : 33. DOI: 10.1007/s11465-023-0749-z
REVIEW ARTICLE
REVIEW ARTICLE

Review on flexible perovskite photodetector: processing and applications

Author information +
History +

Abstract

Next-generation optoelectronics should possess lightweight and flexible characteristics, thus conforming to various types of surfaces or human skins for portable and wearable applications. Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence, aerospace industry, and wise information technology of 120, among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties, remarkable mechanical flexibility, low-cost and low-temperature processing methods. To date, most of the reports have demonstrated the fabrication methods of the perovskite materials, materials engineering, applications in solar cells, light-emitting diodes, lasers, and photodetectors, strategies for device performance enhancement, few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors, which we will give a comprehensive summary, herein. To begin with, a brief introduction to the fabrication methods of perovskite (solution and vapor-based methods), device configurations (photovoltaic, photoconductor, and phototransistor), and performance parameters of the perovskite-based photodetectors are first arranged. Emphatically, processing strategies for photodetectors are presented following, including flexible substrates (i.e., polymer, carbon cloth, fiber, paper, etc.), soft electrodes (i.e., metal-based conductive networks, carbon-based conductive materials, and two-dimensional (2D) conductive materials, etc.), conformal encapsulation (single-layer and multilayer stacked encapsulation), low-dimensional perovskites (0D, 1D, and 2D nanostructures), and elaborate device structures. Typical applications of perovskite-based flexible photodetectors such as optical communication, image sensing, and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level. Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end. The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors, but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing, human life, and health care.

Graphical abstract

Keywords

photodetector / perovskite / flexible / processing / application

Cite this article

Download citation ▾
Xuning ZHANG, Xingyue LIU, Yifan HUANG, Bo SUN, Zhiyong LIU, Guanglan LIAO, Tielin SHI. Review on flexible perovskite photodetector: processing and applications. Front. Mech. Eng., 2023, 18(2): 33 https://doi.org/10.1007/s11465-023-0749-z

References

[1]
He Z Q , Wang K , Zhao Z , Zhang T H , Li Y H , Wang L . A wearable flexible acceleration sensor for monitoring human motion. Biosensors, 2022, 12(8): 620
CrossRef Google scholar
[2]
Wang Y , Sun L J , Wang C , Yang F X , Ren X C , Zhang X T , Dong H L , Hu W P . Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2011, 40(1): 15–18
[3]
Chen X , Pan S , Feng P J , Bian H F , Han X , Liu J H , Guo X , Chen D Z , Ge H X , Shen Q D . Bioinspired ferroelectric polymer arrays as photodetectors with signal transmissible to neuron cells. Advanced Materials, 2016, 28(48): 10684–10691
CrossRef Google scholar
[4]
Dong T , Simões J , Yang Z C . Flexible photodetector based on 2D materials: processing, architectures, and applications. Advanced Materials Interfaces, 2020, 7(4): 1901657
CrossRef Google scholar
[5]
Xie C , Yan F . Flexible photodetectors based on novel functional materials. Small, 2017, 13(43): 1701822
CrossRef Google scholar
[6]
Zhang Y Q . The application of third generation semiconductor in power industry. In: Proceedings of the 10th Chinese Geosynthetics Conference & International Symposium on Civil Engineering and Geosynthetics (ISCEG 2020). Chengdu: E3S Web of Conferences, 2020, 198: 04011
CrossRef Google scholar
[7]
Li J F , Li C F , Xu M S , Ji Z W , Shi K J , Xu X L , Li H B , Xu X G . “W-shaped” injection current dependence of electroluminescence line width in green InGaN/GaN-based LED grown on silicon substrate. Optics Express, 2017, 25(20): A871–A879
CrossRef Google scholar
[8]
Zhu D L , Luo W B , Pan T S , Huang S T , Zhang K S , Xie Q , Shuai Y , Wu C G , Zhang W L . Fabrication of large-scale flexible silicon membrane by crystal-ion-slicing technique using BCB bonding layer. Applied Physics A, 2021, 127(9): 672
CrossRef Google scholar
[9]
Chen X H , Yin L , Lv J , Gross A J , Le M , Gutierrez N G , Li Y , Jeerapan I , Giroud F , Berezovska A , O’Reilly R K , Xu S , Cosnier S , Wang J . Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Advanced Functional Materials, 2019, 29(46): 1905785
CrossRef Google scholar
[10]
Rajendran V , Mohan A M V , Jayaraman M , Nakagawa T . All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self-powered wearable electronics. Nano Energy, 2019, 65: 104055
CrossRef Google scholar
[11]
Yin L , Lv J , Wang J . Structural innovations in printed, flexible, and stretchable electronics. Advanced Materials Technologies, 2020, 5(11): 2000694
CrossRef Google scholar
[12]
Xu Y L , Lin Q Q . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7(1): 011315
CrossRef Google scholar
[13]
Liang J B , Takatsuki D , Higashiwaki M , Shimizu Y , Ohno Y , Nagai Y , Shigekawa N . Fabrication of β-Ga2O3/Si heterointerface and characterization of interfacial structures for high-power device applications. Japanese Journal of Applied Physics, 2022, 61(SF): SF1001
CrossRef Google scholar
[14]
Dong H , Ran C X , Gao W Y , Li M J , Xia Y D , Huang W . Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight, 2023, 3(1): 3
CrossRef Google scholar
[15]
Kim W , Kim H , Yoo T J , Lee J Y , Jo J Y , Lee B H , Sasikala A A , Jung G Y , Pak Y . Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nature Communications, 2022, 13(1): 720
CrossRef Google scholar
[16]
Roy P , Ghosh A , Barclay F , Khare A , Cuce E . Perovskite solar cells: a review of the recent advances. Coatings, 2022, 12(8): 1089
CrossRef Google scholar
[17]
He C L , Liu X G . The rise of halide perovskite semiconductors. Light: Science & Applications, 2023, 12(1): 15
CrossRef Google scholar
[18]
Dey A , Ye J Z , De A , Debroye E , Ha S K , Bladt E , Kshirsagar A S , Wang Z Y , Yin J , Wang Y , Quan L N , Yan F , Gao M Y , Li X M , Shamsi J , Debnath T , Cao M H , Scheel M A , Kumar S , Steele J A , Gerhard M , Chouhan L , Xu K , Wu X G , Li Y X , Zhang Y N , Dutta A , Han C , Vincon I , Rogach A L , Nag A , Samanta A , Korgel B A , Shih C J , Gamelin D R , Son D H , Zeng H B , Zhong H Z , Sun H D , Demir H V , Scheblykin I G , Mora-Seró I , Stolarczyk J K , Zhang J Z , Feldmann J , Hofkens J , Luther J M , Pérez-Prieto J , Li L , Manna L , Bodnarchuk M I , Kovalenko M V , Roeffaers M B J , Pradhan N , Mohammed O F , Bakr O M , Yang P D , Müller-Buschbaum P , Kamat P V , Bao Q L , Zhang Q , Krahne R , Galian R E , Stranks S D , Bals S , Biju V , Tisdale W A , Yan Y , Hoye R L Z , Polavarapu L . State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15(7): 10775–10981
CrossRef Google scholar
[19]
Ye J Z , Byranvand M M , Martínez C O , Hoye R L Z , Saliba M , Polavarapu L . Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angewandte Chemie, 2021, 133(40): 21804–21828
CrossRef Google scholar
[20]
Koren E , Lörtscher E , Rawlings C , Knoll A W , Duerig U . Adhesion and friction in mesoscopic graphite contacts. Science, 2015, 348(6235): 679–683
CrossRef Google scholar
[21]
Liu Y C , Yang Z , Liu S Z . Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Advanced Science, 2018, 5(1): 1700471
CrossRef Google scholar
[22]
Ng C H , Nishimura K , Ito N , Hamada K , Hirotani D , Wang Z , Yang F , Likubo S , Shen Q , Yoshino K , Minemoto T , Hayase S . Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy, 2019, 58: 130–137
CrossRef Google scholar
[23]
Brosch M , Deckert M , Rathi S , Takagaki K , Weidner T , Ohl F W , Schmidt B , Lippert M T . An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Journal of Neural Engineering, 2020, 17(4): 046014
CrossRef Google scholar
[24]
Lee S M , Cho Y , Kim D Y , Chae J S , Choi K C . Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Advanced Optical Materials, 2015, 3(9): 1240–1247
CrossRef Google scholar
[25]
Wu C Y , Wang Z Y , Liang L , Gui T J , Zhong W , Du R C , Xie C , Wang L , Luo L B . Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small, 2019, 15(19): 1900730
CrossRef Google scholar
[26]
Chaudhary S , Gupta S K , Singh Negi C M . Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing, 2020, 109: 104916
CrossRef Google scholar
[27]
Yang Z , Wang M Q , Li J J , Dou J J , Qiu H W , Shao J Y . Spray-coated CsPbBr3 quantum dot films for perovskite photodiodes. ACS Applied Materials & Interfaces, 2018, 10(31): 26387–26395
CrossRef Google scholar
[28]
Tong S C , Gong C D , Zhang C J , Liu G , Zhang D , Zhou C H , Sun J , Xiao S , He J , Gao Y L , Yang J L . Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15: 389–397
CrossRef Google scholar
[29]
Tong S C , Wu H , Zhang C J , Li S G , Wang C H , Shen J Q , Xiao S , He J , Yang J L , Sun J , Gao Y L . Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49: 347–354
CrossRef Google scholar
[30]
Wang Q L , Zhang G N , Zhang H Y , Duan Y Q , Yin Z P , Huang Y A . High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Advanced Functional Materials, 2021, 31(28): 2100857
CrossRef Google scholar
[31]
Wei H M , Ma H , Tai M Q , Wei Y , Li D Q , Zhao X Y , Lin H , Fan S S , Jiang K L . Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7(55): 34795–34800
CrossRef Google scholar
[32]
Li W , Xu Y L , Peng J L , Li R M , Song J N , Huang H H , Cui L H , Lin Q Q . Evaporated perovskite thick junctions for X-ray detection. ACS Applied Materials & Interfaces, 2021, 13(2): 2971–2978
CrossRef Google scholar
[33]
Zhang X N , Liu X Y , Sun B , Ye H B , He C H , Kong L X , Li G L , Liu Z Y , Liao G L . Ultrafast, self-powered, and charge-transport-layer-free ultraviolet photodetectors based on sequentially vacuum-evaporated lead-free Cs2AgBiBr6 thin films. ACS Applied Materials & Interfaces, 2021, 13(30): 35949–35960
CrossRef Google scholar
[34]
Liu X Y , Liu Z Y , Li J J , Tan X H , Sun B , Fang H , Xi S , Shi T L , Tang Z R , Liao G L . Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. Journal of Materials Chemistry C, 2020, 8(10): 3337–3350
CrossRef Google scholar
[35]
Tian C C , Wang F , Wang Y P , Yang Z , Chen X J , Mei J J , Liu H Z , Zhao D X . Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Applied Materials & Interfaces, 2019, 11(17): 15804–15812
CrossRef Google scholar
[36]
Swartwout R , Hoerantner M T , Bulović V . Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2(2): 119–145
CrossRef Google scholar
[37]
Dai X F , Xu K , Wei F A . Recent progress in perovskite solar cells: the perovskite layer. Beilstein Journal of Nanotechnology, 2020, 11: 51–60
CrossRef Google scholar
[38]
Huang D W , Xie P F , Pan Z X , Rao H S , Zhong X H . One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(39): 22420–22428
CrossRef Google scholar
[39]
Wan X J , Yu Z , Tian W M , Huang F Z , Jin S Y , Yang X C , Cheng Y B , Hagfeldt A , Sun L C . Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46: 8–15
CrossRef Google scholar
[40]
Gong O Y , Seo M K , Choi J H , Kim S Y , Kim D H , Cho I S , Park N G , Han G S , Jung H S . High-performing laminated perovskite solar cells by surface engineering of perovskite films. Applied Surface Science, 2022, 591: 153148
CrossRef Google scholar
[41]
Das S , Yang B , Gu G , Joshi P C , Ivanov I N , Rouleau C M , Aytug T , Geohegan D B , Xiao K . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2(6): 680–686
CrossRef Google scholar
[42]
Kim H S , Im S H , Park N G . Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 2014, 118(11): 5615–5625
CrossRef Google scholar
[43]
Ding X Y , Liu J H , Harris T A L . A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62(7): 2508–2524
CrossRef Google scholar
[44]
Huang K Q , Li H Y , Zhang C J , Gao Y X , Liu T J , Zhang J , Gao Y L , Peng Y Y , Ding L M , Yang J L . Highly efficient perovskite solar cells processed under ambient conditions using in situ substrate-heating-assisted deposition. Solar RRL, 2019, 3(3): 1800318
CrossRef Google scholar
[45]
Liu B T , Yang J H , Huang Y S . Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere. Journal of Power Sources, 2021, 500: 229985
CrossRef Google scholar
[46]
Dehghani A , Jahanshah F , Borman D , Dennis K , Wang J . Design and engineering challenges for digital ink-jet printing on textiles. International Journal of Clothing Science and Technology, 2004, 16(1/2): 262–273
CrossRef Google scholar
[47]
Khan A , Rahman K , Kim D S , Choi K H . Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. Journal of Materials Processing Technology, 2012, 212(3): 700–706
CrossRef Google scholar
[48]
Li Y C , Shi B , Xu Q J , Yan L L , Ren N Y , Chen Y L , Han W , Huang Q , Zhao Y , Zhang X D . Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Advanced Energy Materials, 2021, 11(48): 2102046
CrossRef Google scholar
[49]
Zhang Y L , Huang Y , Zhou C W , Xu Y F , Zhong J Q , Mao H Y . Crystalline structures and optoelectronic properties of orthorhombic CsPbBr3 polycrystalline films grown by the co-evaporation method. Vacuum, 2022, 202: 111219
CrossRef Google scholar
[50]
Li C W , Song Z N , Chen C , Xiao C X , Subedi B , Harvey S P , Shrestha N , Subedi K K , Chen L , Liu D C , Li Y , Kim Y W , Jiang C S , Heben M J , Zhao D W , Ellingson R J , Podraza N J , Al-Jassim M , Yan Y F . Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5(10): 768–776
CrossRef Google scholar
[51]
Liang G X , Lan H B , Fan P , Lan C F , Zheng Z H , Peng H X , Luo J T . Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation. Coatings, 2018, 8(8): 256
CrossRef Google scholar
[52]
Ahmadi M , Wu T , Hu B . A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242
CrossRef Google scholar
[53]
Chen H , Wang H , Wu J , Wang F , Zhang T , Wang Y F , Liu D T , Li S B , Penty R V , White I H . Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13(8): 1997–2018
CrossRef Google scholar
[54]
Wang Y , Li D L , Chao L F , Niu T T , Chen Y H , Huang W . Perovskite photodetectors for flexible electronics: recent advances and perspectives. Applied Materials Today, 2022, 28: 101509
CrossRef Google scholar
[55]
Hao D D , Zou J , Huang J . Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat, 2020, 2(1): 139–169
CrossRef Google scholar
[56]
Li C L , Li J , Li Z P , Zhang H Y , Dang Y Y , Kong F G . High-performance photodetectors based on nanostructured perovskites. Nanomaterials, 2021, 11(4): 1038
CrossRef Google scholar
[57]
Wang Y , Zhang X W , Jiang Q , Liu H , Wang D G , Meng J H , You J B , Yin Z G . Interface engineering of high-performance perovskite photodetectors based on PVP/SnO2 electron transport layer. ACS Applied Materials & Interfaces, 2018, 10(7): 6505–6512
CrossRef Google scholar
[58]
Tian W , Zhou H P , Li L . Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13(41): 1702107
CrossRef Google scholar
[59]
Miao J L , Zhang F J . Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7(7): 1741–1791
CrossRef Google scholar
[60]
Yang Z , Dou J J , Wang M Q , Li J J , Huang J , Shao J Y . Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures. Journal of Materials Chemistry C, 2018, 6(25): 6739–6746
CrossRef Google scholar
[61]
Li C L , Ma Y , Xiao Y F , Shen L , Ding L M . Advances in perovskite photodetectors. InfoMat, 2020, 2(6): 1247–1256
CrossRef Google scholar
[62]
Li L D , Ye S , Qu J L , Zhou F F , Song J , Shen G Z . Recent advances in perovskite photodetectors for image sensing. Small, 2021, 17(18): 2005606
CrossRef Google scholar
[63]
Li F , Ma C , Wang H , Hu W J , Yu W L , Sheikh A D , Wu T . Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 2015, 6(1): 8238
CrossRef Google scholar
[64]
García de Arquer F P , Armin A , Meredith P , Sargent E H . Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2(3): 16100
CrossRef Google scholar
[65]
Huang J F , Lee J , Nakayama H , Schrock M , Cao D X , Cho K , Bazan G C , Nguyen T Q . Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity. ACS Nano, 2021, 15(1): 1753–1763
CrossRef Google scholar
[66]
Kim H , Kang J , Ahn H , Jung I H . Contribution of dark current density to the photodetecting properties of thieno[3,4-b]pyrazine-based low bandgap polymers. Dyes and Pigments, 2022, 197: 109910
CrossRef Google scholar
[67]
De Fazio D , Uzlu B , Torre I , Monasterio-Balcells C , Gupta S , Khodkov T , Bi Y , Wang Z X , Otto M , Lemme M C , Goossens S , Neumaier D , Koppens F H L . Graphene-quantum dot hybrid photodetectors with low dark-current readout. ACS Nano, 2020, 14(9): 11897–11905
CrossRef Google scholar
[68]
Grimoldi A , Colella L , La Monaca L , Azzellino G , Caironi M , Bertarelli C , Natali D , Sampietro M . Inkjet printed polymeric electron blocking and surface energy modifying layer for low dark current organic photodetectors. Organic Electronics, 2016, 36: 29–34
CrossRef Google scholar
[69]
Zhao D P , Saputra R M , Song P , Yang Y H , Li Y Z . How graphene strengthened molecular photoelectric performance of solar cells: a photo current-voltage assessment. Solar Energy, 2021, 213: 271–283
CrossRef Google scholar
[70]
Hu W H , Vael C , Diethelm M , Strassel K , Anantharaman S B , Aribia A , Cremona M , Jenatsch S , Nüesch F , Hany R . On the response speed of narrowband organic optical upconversion devices. Advanced Optical Materials, 2022, 10(17): 2200695
CrossRef Google scholar
[71]
Bao C X , Chen Z L , Fang Y J , Wei H T , Deng Y H , Xiao X , Li L L , Huang J S . Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Advanced Materials, 2017, 29(39): 1703209
CrossRef Google scholar
[72]
De Sanctis A , Jones G F , Wehenkel D J , Bezares F , Koppens F H L , Craciun M F , Russo S . Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Science Advances, 2017, 3(5): e1602617
CrossRef Google scholar
[73]
Zhang J , Li J A , Cheng W , Zhang J H , Zhou Z , Sun X D , Li L L , Liang J G , Shi Y , Pan L J . Challenges in materials and devices of electronic skin. ACS Materials Letters, 2022, 4(4): 577–599
CrossRef Google scholar
[74]
Han S T , Peng H Y , Sun Q J , Venkatesh S , Chung K S , Lau S C , Zhou Y , Roy V A L . An overview of the development of flexible sensors. Advanced Materials, 2017, 29(33): 1700375
CrossRef Google scholar
[75]
Jing H , Peng R W , Ma R M , He J , Zhou Y , Yang Z Q , Li C Y , Liu Y , Guo X J , Zhu Y Y , Wang D , Su J , Sun C , Bao W Z , Wang M . Flexible ultrathin single-crystalline perovskite photodetector. Nano Letters, 2020, 20(10): 7144–7151
CrossRef Google scholar
[76]
Lee Y H , Song I , Kim S H , Park J H , Park S O , Lee J H , Won Y , Cho K , Kwak S K , Oh J H . Perovskite granular wire photodetectors with ultrahigh photodetectivity. Advanced Materials, 2020, 32(32): 2002357
CrossRef Google scholar
[77]
Tan Q S , Ye G , Zhang Y , Du X J , Liu H N , Xie L M , Zhou Y , Liu N . Vacuum-filtration enabled large-area CsPbBr3 films on porous substrates for flexible photodetectors. Journal of Materials Chemistry C, 2019, 7(43): 13402–13409
CrossRef Google scholar
[78]
Kim T , Jeong S , Kim K H , Shim H , Kim D , Kim H J . Engineered surface halide defects by two-dimensional perovskite passivation for deformable intelligent photodetectors. ACS Applied Materials & Interfaces, 2022, 14(22): 26004–26013
CrossRef Google scholar
[79]
Chen Y T , Zhao C Y , Zhang T T , Wu X H , Zhang W J , Ding S J . Flexible and filter-free color-imaging sensors with multicomponent perovskites deposited using enhanced vapor technology. Small, 2021, 17(26): 2007543
CrossRef Google scholar
[80]
Lédée F , Ciavatti A , Verdi M , Basiricò L , Fraboni B . Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Advanced Optical Materials, 2022, 10(1): 2101145
CrossRef Google scholar
[81]
Li X M , Yu D J , Chen J , Wang Y , Cao F , Wei Y , Wu Y , Wang L , Zhu Y , Sun Z G , Ji J P , Shen Y L , Sun H D , Zeng H B . Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023
CrossRef Google scholar
[82]
Liu S T , Liu X H , Zhu Z F , Wang S L , Gu Y , Shan F K , Zou Y S . Improved flexible ZnO/CsPbBr3/Graphene UV photodetectors with interface optimization by solution process. Materials Research Bulletin, 2020, 130: 110956
CrossRef Google scholar
[83]
Wang Y , Liu W W , Xin W , Zou T T , Zheng X , Li Y S , Xie X H , Sun X J , Yu W L , Liu Z B , Chen S Q , Yang J J , Guo C L . Back-reflected performance-enhanced flexible perovskite photodetectors through substrate texturing with femtosecond laser. ACS Applied Materials & Interfaces, 2020, 12(23): 26614–26623
CrossRef Google scholar
[84]
Lei J , Gao F , Wang H X , Li J , Jiang J X , Wu X , Gao R R , Yang Z , Liu S Z . Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Solar Energy Materials and Solar Cells, 2018, 187: 1–8
CrossRef Google scholar
[85]
Sun H X , Lei T Y , Tian W , Cao F R , Xiong J , Li L . Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small, 2017, 13(28): 1701042
CrossRef Google scholar
[86]
Ding D , Li H N , Yao H Z , Liu L , Tian B B , Su C L , Wang Y , Shi Y M . Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7(31): 9496–9503
CrossRef Google scholar
[87]
Sun H X , Tian W , Cao F R , Xiong J , Li L . Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Advanced Materials, 2018, 30(21): 1706986
CrossRef Google scholar
[88]
Kim H J , Oh H , Kim T , Kim D , Park M . Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers. ACS Applied Nano Materials, 2022, 5(1): 1308–1316
CrossRef Google scholar
[89]
Zheng Q H , Li H X , Zheng Y L , Li Y N , Liu X , Nie S X , Ouyang X H , Chen L H , Ni Y H . Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 2021, 9(13): 4496–4504
CrossRef Google scholar
[90]
Hassan M , Abbas G , Li N , Afzal A , Haider Z , Ahmed S , Xu X R , Pan C F , Peng Z C . Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Advanced Materials Technologies, 2022, 7(3): 2100773
CrossRef Google scholar
[91]
Zhang X Z , He D , Yang Q , Atashbar M Z . Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor. Chemical Engineering Journal, 2022, 433: 133751
CrossRef Google scholar
[92]
Li S X , Xu X L , Yang Y , Xu Y S , Xu Y , Xia H . Highly deformable high-performance paper-based perovskite photodetector with improved stability. ACS Applied Materials & Interfaces, 2021, 13(27): 31919–31927
CrossRef Google scholar
[93]
Wang W L , Li G L , Jiang Z H , Zhang Y , Hu T J , Yi J , Chu Z Y . Structural, optical and flexible properties of CH3NH3PbI3 perovskite films deposited on paper substrates. Optical Materials, 2021, 114: 110926
CrossRef Google scholar
[94]
Fang H J , Li J W , Ding J , Sun Y , Li Q , Sun J L , Wang L D , Yan Q F . An origami perovskite photodetector with spatial recognition ability. ACS Applied Materials & Interfaces, 2017, 9(12): 10921–10928
CrossRef Google scholar
[95]
Yang Y , Hu H J , Chen Z Y , Wang Z Y , Jiang L M , Lu G X , Li X J , Chen R M , Jin J , Kang H C , Chen H X , Lin S , Xiao S Q , Zhao H Y , Xiong R , Shi J , Zhou Q F , Xu S , Chen Y . Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Letters, 2020, 20(6): 4445–4453
CrossRef Google scholar
[96]
Chen X J , Gao X X , Nomoto A , Shi K , Lin M Y , Hu H J , Gu Y , Zhu Y Z , Wu Z H , Chen X , Wang X Y , Qi B Y , Zhou S , Ding H , Xu S . Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Research, 2021, 14(9): 3248–3252
CrossRef Google scholar
[97]
Mathur A , Fan H , Maheshwari V . Soft polymer-organolead halide perovskite films for highly stretchable and durable photodetectors with Pt-Au nanochain-based electrodes. ACS Applied Materials & Interfaces, 2021, 13(49): 58956–58965
CrossRef Google scholar
[98]
Bao C X , Zhu W D , Yang J , Li F M , Gu S , Wang Y R Q , Yu T , Zhu J , Zhou Y , Zou Z G . Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Applied Materials & Interfaces, 2016, 8(36): 23868–23875
CrossRef Google scholar
[99]
Yang J , Bao C X , Zhu K , Yu T , Xu Q Y . High-performance transparent conducting metal network electrodes for perovksite photodetectors. ACS Applied Materials & Interfaces, 2018, 10(2): 1996–2003
CrossRef Google scholar
[100]
Lin G M , Lin Y W , Sun B Y . Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV-visible to near-infrared. Nanotechnology, 2022, 33(8): 085204
CrossRef Google scholar
[101]
Kim J M , Kim S , Choi S H . High-performance n-i-p-type perovskite photodetectors employing graphene-transparent conductive electrodes n-type doped with amine group molecules. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 734–739
CrossRef Google scholar
[102]
Jang W , Kim B G , Seo S , Shawky A , Kim M S , Kim K , Mikladal B , Kauppinen E I , Maruyama S , Jeon I , Wang D H . Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37: 101081
CrossRef Google scholar
[103]
Marunchenko A A , Baranov M A , Ushakova E V , Ryabov D R , Pushkarev A P , Gets D S , Nasibulin A G , Makarov S V . Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Advanced Functional Materials, 2022, 32(12): 2109834
CrossRef Google scholar
[104]
Deng W , Huang H C , Jin H M , Li W , Chu X , Xiong D , Yan W , Chun F J , Xie M L , Luo C , Jin L , Liu C Q , Zhang H T , Deng W L , Yang W Q . All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Advanced Optical Materials, 2019, 7(6): 1801521
CrossRef Google scholar
[105]
Ren A B , Zou J H , Lai H G , Huang Y X , Yuan L M , Xu H , Shen K , Wang H , Wei S Y , Wang Y F , Hao X , Zhang J Q , Zhao D W , Wu J , Wang Z M . Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7(7): 1901–1911
CrossRef Google scholar
[106]
Hu J , Xiong X , Guan W , Xiao Z , Tan C , Long H . Durability engineering in all-inorganic CsPbX3 perovskite solar cells: strategies and challenges. Materials Today Chemistry, 2022, 24: 100792
CrossRef Google scholar
[107]
Wu G B , Liang R , Ge M Z , Sun G X , Zhang Y , Xing G C . Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials, 2022, 34(8): 2105635
CrossRef Google scholar
[108]
Cao Q , Wang T , Yang J B , Zhang Y X , Li Y K , Pu X Y , Zhao J S , Chen H , Li X Q , Tojiboyev I , Chen J Z , Etgar L , Li X H . Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Advanced Functional Materials, 2022, 32(32): 2201036
CrossRef Google scholar
[109]
Wu W Q , Wang X D , Han X , Yang Z , Gao G Y , Zhang Y F , Hu J F , Tan Y W , Pan A L , Pan C F . Flexible photodetector arrays based on patterned CH3NH3PbI3‒xClx perovskite film for real-time photosensing and imaging. Advanced Materials, 2019, 31(3): 1805913
CrossRef Google scholar
[110]
Wu W Q , Han X , Li J , Wang X D , Zhang Y F , Huo Z H , Chen Q S , Sun X D , Xu Z S , Tan Y W , Pan C F , Pan A L . Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Advanced Materials, 2021, 33(9): 2006006
CrossRef Google scholar
[111]
Zhao F Y , Luo X , Gu C J , Chen J M , Hu Z Y , Peng Y Q . Novel 3D printing encapsulation strategies for perovskite photodetectors. Advanced Materials Technologies, 2022, 7(12): 2200521
CrossRef Google scholar
[112]
Ma S , Yuan G Z , Zhang Y , Yang N , Li Y J , Chen Q . Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy & Environmental Science, 2022, 15(1): 13–55
CrossRef Google scholar
[113]
Otero-Martínez C , Fiuza-Maneiro N , Polavarapu L . Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics. ACS Applied Materials & Interfaces, 2022, 14(30): 34291–34302
CrossRef Google scholar
[114]
Qaid S M H , Ghaithan H M , AlHarbi K K , Al-Asbahi B A , Aldwayyan A S . Enhancement of light amplification of CsPbBr3 perovskite quantum dot films via surface encapsulation by PMMA polymer. Polymers, 2021, 13(15): 2574
CrossRef Google scholar
[115]
You X , Wu J J , Chi Y W . Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell. Analytical Chemistry, 2019, 91(8): 5058–5066
CrossRef Google scholar
[116]
Xia B Z , Tu M , Pradhan B , Ceyssens F , Tietze M L , Rubio-Giménez V , Wauteraerts N , Gao Y J , Kraft M , Steele J A , Debroye E , Hofkens J , Ameloot R . Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Advanced Engineering Materials, 2022, 24(1): 2100930
CrossRef Google scholar
[117]
Bose R , Yin J , Zheng Y Z , Yang C , Gartstein Y N , Bakr O M , Malko A V , Mohammed O F . Gentle materials need gentle fabrication: encapsulation of perovskites by gas-phase alumina deposition. The Journal of Physical Chemistry Letters, 2021, 12(9): 2348–2357
CrossRef Google scholar
[118]
Takada Y , Tsuji T , Okamoto N , Saito T , Kondo K , Yoshimura T , Fujimura N , Higuchi K , Kitajima A , Oshima A . Aluminum-doped zinc oxide electrode for robust (Pb,La)(Zr,Ti)O3 capacitors: effect of oxide insulator encapsulation and oxide buffer layer. Journal of Materials Science: Materials in Electronics, 2014, 25(5): 2155–2161
CrossRef Google scholar
[119]
Fuentes-Fernandez E M A , Salomon-Preciado A M , Gnade B E , Quevedo-Lopez M A , Shah P , Alshareef H N . Fabrication of relaxer-based piezoelectric energy harvesters using a sacrificial poly-Si seeding layer. Journal of Electronic Materials, 2014, 43(11): 3898–3904
CrossRef Google scholar
[120]
Steinmann V , Moro L . Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. Journal of Materials Research, 2018, 33(13): 1925–1936
CrossRef Google scholar
[121]
Tu S H , Chen M , Wu L M . Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage and reuse in white light-emitting diodes. Chemical Engineering Journal, 2021, 412: 128688
CrossRef Google scholar
[122]
Rathore S , Singh A . Bending fatigue damage reduction in indium tin oxide (ITO) by polyimide and ethylene vinyl acetate encapsulation for flexible solar cells. Engineering Research Express, 2020, 2(1): 015022
CrossRef Google scholar
[123]
Luo Z D , Zhang C P , Yang L , Zhang J B . Ambient spray coating of organic-inorganic composite thin films for perovskite solar cell encapsulation. ChemSusChem, 2022, 15(3): e202102008
CrossRef Google scholar
[124]
Jiang Y , Qiu L B , Juarez-Perez E J , Ono L K , Hu Z H , Liu Z H , Wu Z F , Meng L Q , Wang Q J , Qi Y B . Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4(7): 585–593
CrossRef Google scholar
[125]
Dong Q S , Chen M , Liu Y H , Eickemeyer F T , Zhao W D , Dai Z H , Yin Y F , Jiang C , Feng J S , Jin S Y , Liu S Z , Zakeeruddin S M , Grätzel M , Padture N P , Shi Y T . Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5(6): 1587–1601
CrossRef Google scholar
[126]
Shi Y R , Chen C H , Lou Y H , Wang Z K . Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5(20): 7467–7478
CrossRef Google scholar
[127]
Ye J J , Liu G Z , Jiang L , Zheng H Y , Zhu L Z , Zhang X H , Wang H X , Pan X , Dai S Y . Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407: 427–433
CrossRef Google scholar
[128]
Wang H P , Li S Y , Liu X Y , Shi Z F , Fang X S , He J H . Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): 2003309
CrossRef Google scholar
[129]
Jeon Y P , Woo S J , Kim T W . Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Applied Surface Science, 2018, 434: 375–381
CrossRef Google scholar
[130]
Asuo I M , Fourmont P , Ka I , Gedamu D , Bouzidi S , Pignolet A , Nechache R , Cloutier S G . Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 2019, 15(1): 1804150
CrossRef Google scholar
[131]
Wu D J , Xu Y C , Zhou H , Feng X , Zhang J Q , Pan X Y , Gao Z , Wang R , Ma G K , Tao L , Wang H B , Duan J X , Wan H Z , Zhang J , Shen L P , Wang H , Zhai T Y . Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat, 2022, 4(9): e12320
CrossRef Google scholar
[132]
Zheng W , Lin R C , Zhang Z J , Liao Q X , Liu J J , Huang F . An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake. Nanoscale, 2017, 9(34): 12718–12726
CrossRef Google scholar
[133]
Shen K , Xu H , Li X , Guo J , Sathasivam S , Wang M Q , Ren A B , Choy K L , Parkin I P , Guo Z X , Wu J . Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Advanced Materials, 2020, 32(22): 2000004
CrossRef Google scholar
[134]
Perumal Veeramalai C , Yang S Y , Wei J Q , Sulaman M , Zhi R N , Saleem M I , Tang Y , Jiang Y R , Zou B S . Porous single-wall carbon nanotube templates decorated with all-inorganic perovskite nanocrystals for ultraflexible photodetectors. ACS Applied Nano Materials, 2020, 3(1): 459–467
CrossRef Google scholar
[135]
Zheng J L , Luo C Z , Shabbir B , Wang C J , Mao W X , Zhang Y P , Huang Y M , Dong Y M , Jasieniak J J , Pan C X , Bao Q L . Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11(16): 8020–8026
CrossRef Google scholar
[136]
Wu D J , Zhou H , Song Z H , Zheng M , Liu R H , Pan X Y , Wan H Z , Zhang J , Wang H , Li X M , Zeng H B . Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14(3): 2777–2787
CrossRef Google scholar
[137]
Deng H , Yang X K , Dong D D , Li B , Yang D , Yuan S J , Qiao K K , Cheng Y B , Tang J , Song H S . Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Letters, 2015, 15(12): 7963–7969
CrossRef Google scholar
[138]
Oh H , Jin Kim H , Kim S , Kim J A , Kang G M , Park M . Highly flexible and stable perovskite/microbead hybrid photodetectors with improved interfacial light trapping. Applied Surface Science, 2021, 544: 148850
CrossRef Google scholar
[139]
Saraf R , Fan H , Maheshwari V . Porous perovskite films integrated with Au−Pt nanowire-based electrodes for highly flexible large-area photodetectors. npj Flexible Electronics, 2020, 4(1): 30
CrossRef Google scholar
[140]
Zhan Y , Cheng Q F , Peng J S , Zhao Y , Vogelbacher F , Lai X T , Wang F Y , Song Y L , Li M Z . Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98: 107254
CrossRef Google scholar
[141]
Meng X C , Cai Z R , Zhang Y Y , Hu X T , Xing Z , Huang Z Q , Huang Z D , Cui Y J , Hu T , Su M , Liao X F , Zhang L , Wang F Y , Song Y L , Chen Y W . Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11(1): 3016
CrossRef Google scholar
[142]
Wen X X , Lu Z H , Valdman L , Wang G C , Washington M , Lu T M . High-crystallinity epitaxial Sb2Se3 thin films on mica for flexible near-infrared photodetectors. ACS Applied Materials & Interfaces, 2020, 12(31): 35222–35231
CrossRef Google scholar
[143]
Schneider D S , Grundmann A , Bablich A , Passi V , Kataria S , Kalisch H , Heuken M , Vescan A , Neumaier D , Lemme M C . Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics, 2020, 7(6): 1388–1395
CrossRef Google scholar
[144]
Li P , Hao Q Y , Liu J D , Qi D Y , Gan H B , Zhu J Q , Liu F , Zheng Z J , Zhang W J . Flexible photodetectors based on all-solution-processed Cu electrodes and inse nanoflakes with high stabilities. Advanced Functional Materials, 2022, 32(10): 2108261
CrossRef Google scholar
[145]
Yu G , Liu Z , Xie X M , Ouyang X , Shen G Z . Flexible photodetectors with single-crystalline GaTe nanowires. Journal of Materials Chemistry C, 2014, 2(30): 6104–6110
CrossRef Google scholar
[146]
An J N , Le T S D , Lim C H J , Tran V T , Zhan Z Y , Gao Y , Zheng L X , Sun G Z , Kim Y J . Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science, 2018, 5(8): 1800496
CrossRef Google scholar
[147]
Wang Y H , Yang Z B , Li H R , Li S , Zhi Y S , Yan Z Y , Huang X , Wei X H , Tang W H , Wu Z P . Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Applied Materials & Interfaces, 2020, 12(42): 47714–47720
CrossRef Google scholar
[148]
Tong S C , Sun J , Wang C H , Huang Y L , Zhang C J , Shen J Q , Xie H P , Niu D M , Xiao S , Yuan Y B , He J , Yang J L , Gao Y L . High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Advanced Electronic Materials, 2017, 3(7): 1700058
CrossRef Google scholar
[149]
Hu X , Zhang X D , Liang L , Bao J , Li S , Yang W L , Xie Y . High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380
CrossRef Google scholar
[150]
Li C L , Lu J R , Zhao Y , Sun L Y , Wang G X , Ma Y , Zhang S M , Zhou J R , Shen L , Huang W . Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15(44): 1903599
CrossRef Google scholar
[151]
Leung S F , Ho K T , Kung P K , Hsiao V K S , Alshareef H N , Wang Z L , He J H . A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Advanced Materials, 2018, 30(8): 1704611
CrossRef Google scholar
[152]
Saidaminov M I , Adinolfi V , Comin R , Abdelhady A L , Peng W , Dursun I , Yuan M J , Hoogland S , Sargent E H , Bakr O M . Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6(1): 8724
CrossRef Google scholar
[153]
Jung H R , Cho Y , Jo W . UV and visible photodetectors of MAPbBr3 and MAPbCl3 perovskite single crystals via single photocarrier transport design. Advanced Optical Materials, 2022, 10(7): 2102175
CrossRef Google scholar
[154]
Chen Z L , Li C L , Zhumekenov A A , Zheng X P , Yang C , Yang H Z , He Y , Turedi B , Mohammed O F , Shen L , Bakr O M . Solution-processed visible-blind ultraviolet photodetectors with nanosecond response time and high detectivity. Advanced Optical Materials, 2019, 7(19): 1900506
CrossRef Google scholar
[155]
Zhou Y , Qiu X , Wan Z A , Long Z H , Poddar S , Zhang Q P , Ding Y C , Chan C L J , Zhang D Q , Zhou K M , Lin Y J , Fan Z Y . Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100: 107516
CrossRef Google scholar
[156]
Li Y , Shi Z F , Li S , Lei L Z , Ji H F , Wu D , Xu T T , Tian Y T , Li X J . High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. Journal of Materials Chemistry C, 2017, 5(33): 8355–8360
CrossRef Google scholar
[157]
Cen G B , Liu Y J , Zhao C X , Wang G , Fu Y , Yan G H , Yuan Y , Su C H , Zhao Z J , Mai W J . Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 2019, 15(36): 1902135
CrossRef Google scholar
[158]
Zhu Z H , Deng W , Li W , Chun F J , Luo C , Xie M L , Pu B , Lin N , Gao B , Yang W Q . Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors. Advanced Materials Interfaces, 2021, 8(6): 2001812
CrossRef Google scholar
[159]
Gong M G , Sakidja R , Goul R , Ewing D , Casper M , Stramel A , Elliot A , Wu J Z . High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019, 13(2): 1772–1783
CrossRef Google scholar
[160]
Hou Z L , Liu X Y , Wen G J , Jiang S L . Enhancing the photoelectric performance of the self-powered all vapor-deposited CsPbCl3 ultraviolet photodetectors by a novel cadmium-doping strategy and heterojunction engineering. Solar Energy Materials and Solar Cells, 2023, 251: 112175
CrossRef Google scholar
[161]
Yang L , Tsai W L , Li C S , Hsu B W , Chen C Y , Wu C I , Lin H W . High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications. ACS Applied Materials & Interfaces, 2019, 11(50): 47054–47062
CrossRef Google scholar
[162]
Lei L Z , Shi Z F , Li Y , Ma Z Z , Zhang F , Xu T T , Tian Y T , Wu D , Li X J , Du G T . High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. Journal of Materials Chemistry C, 2018, 6(30): 7982–7988
CrossRef Google scholar
[163]
Shuang Z H , Zhou H , Wu D J , Zhang X H , Xiao B A , Ma G K , Zhang J , Wang H . Low-temperature process for self-powered lead-free Cs2AgBiBr6 perovskite photodetector with high detectivity. Chemical Engineering Journal, 2022, 433: 134544
CrossRef Google scholar
[164]
Yan G H , Jiang B Q , Xiao Y , Zhao C X , Yuan Y , Liang Z C . Alkali metal ions induced high-quality all-inorganic Cs2AgBiBr6 perovskite films for flexible self-powered photodetectors. Applied Surface Science, 2022, 579: 152198
CrossRef Google scholar
[165]
Syazwani C J N , Wahab N H A , Sunar N , Ariffin S H S , Wong K Y , Aun Y . Indoor positioning system: a review. International Journal of Advanced Computer Science and Applications, 2022, 13(6): 477–490
CrossRef Google scholar
[166]
Salih K O M , Rashid T A , Radovanovic D , Bacanin N . A comprehensive survey on the internet of things with the industrial marketplace. Sensors, 2022, 22(3): 730
CrossRef Google scholar
[167]
Mohsin M J , Murdas I A . Design an outdoor light fidelity (Li-Fi) system based on all-optical OFDM architecture. International Journal of Intelligent Engineering and Systems, 2022, 15(3): 193–204
CrossRef Google scholar
[168]
Cao Y , Zheng Y F , Wang X , Liu Y B , Liu Y . Research and prospect on key technologies of indoor positioning based on visible light communication. Journal of Physics: Conference Series, 2022, 2160(1): 012074
CrossRef Google scholar
[169]
Liu R H , Zhang J Q , Zhou H , Song Z H , Song Z N , Grice C R , Wu D J , Shen L P , Wang H . Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Advanced Optical Materials, 2020, 8(8): 1901735
CrossRef Google scholar
[170]
Huang B , Liu J X , Han Z Y , Gu Y , Yu D J , Xu X B , Zou Y S . High-performance perovskite dual-band photodetectors for potential applications in visible light communication. ACS Applied Materials & Interfaces, 2020, 12(43): 48765–48772
CrossRef Google scholar
[171]
Mohsan S A H , Mazinani A , Sadiq H B , Amjad H . A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions. Optical and Quantum Electronics, 2022, 54(3): 187
CrossRef Google scholar
[172]
Schmid S, Ziegler J, Corbellini G, Gross T R, Mangold S. Using consumer led light bulbs for low-cost visible light communication systems. In: Proceedings of the 1st ACM MobiCon Workshop on Visible Light Communication Systems. Hawaii: Association for Computing Machinery, 2014, 9–14
[173]
Dutta A K. Imaging beyond human vision. In: Proceedings of the 8th International Conference on Electrical and Computer Engineering. Dhaka: IEEE, 2014, 224–229
[174]
Nikzad S. High-performance silicon imagers and their applications in astrophysics, medicine and other fields. In: Nikzad S, ed. High Performance Silicon Imaging. Woodhead Publishing, 2014, 411–438
[175]
Lee S M , Biswas R , Li W G , Kang D , Chan L , Yoon J . Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano, 2014, 8(10): 10507–10516
CrossRef Google scholar
[176]
Lee S Y , Kim S H , Hwang H , Sim J Y , Yang S M . Controlled pixelation of inverse opaline structures towards reflection-mode displays. Advanced Materials, 2014, 26(15): 2391–2397
CrossRef Google scholar
[177]
Sakanoue T , Mizukami M , Oku S , Yoshimura Y , Abiko M , Tokito S . Fluorosurfactant-assisted photolithography for patterning of perfluoropolymers and solution-processed organic semiconductors for printed displays. Applied Physics Express, 2014, 7(10): 101602
CrossRef Google scholar
[178]
Xia K L , Wu W Q , Zhu M J , Shen X Y , Yin Z , Wang H M , Li S , Zhang M C , Wang H M , Lu H J , Pan A L , Pan C F , Zhang Y Y . CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65(5): 343–349
CrossRef Google scholar
[179]
van Breemen A J J M , Ollearo R , Shanmugam S , Peeters B , Peters L C J M , van de Ketterij R L , Katsouras I , Akkerman H B , Frijters C H , Di Giacomo F , Veenstra S , Andriessen R , Janssen R A J , Meulenkamp E A , Gelinck G H . A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nature Electronics, 2021, 4(11): 818–826
CrossRef Google scholar
[180]
Jang J , Park Y G , Cha E , Ji S , Hwang H , Kim G G , Jin J , Park J U . 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Advanced Materials, 2021, 33(30): 2101093
CrossRef Google scholar
[181]
Gu L L , Poddar S , Lin Y J , Long Z H , Zhang D Q , Zhang Q P , Shu L , Qiu X , Kam M , Javey A , Fan Z Y . A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581(7808): 278–282
CrossRef Google scholar
[182]
Li H , Zhang Y , Zhou M , Ding H Y , Zhao L , Jiang T M , Yang H Y , Zhao F , Chen W Q , Teng Z W , Qiu J B , Yu X , Yang Y M , Xu X H . A solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Letters, 2022, 7(9): 2876–2883
CrossRef Google scholar
[183]
Alfonso C , Garcia-Gonzalez M A , Parrado E , Gil-Rojas J , Ramos-Castro J , Capdevila L . Agreement between two photoplethysmography-based wearable devices for monitoring heart rate during different physical activity situations: a new analysis methodology. Scientific Reports, 2022, 12(1): 15448
CrossRef Google scholar
[184]
Li C C , Chen H M , Zhang S C , Yang W , Gao M , Huang P Y , Wu M Q , Sun Z Y , Wang J , Wei X . Wearable and biocompatible blood oxygen sensor based on heterogeneously integrated lasers on a laser-induced graphene electrode. ACS Applied Electronic Materials, 2022, 4(4): 1583–1591
CrossRef Google scholar

Nomenclature

Abbreviations
ALDAtomic layer deposition
CCDCharge-coupled device
CMOSComplementary metal-oxide-semiconductor
CVDChemical vapor deposition
DMFN,N-dimethylformamide
DMSODimethyl sulfide
e-hElectron-hole
EQEExternal quantum efficiency
EVAEthylene-vinyl acetate
FETField-effect transistor
FTOFluorine-doped tin oxide
ITOIndium-tin-oxide
LDRLinear dynamic range
LEDLight-emitting diode
NEPNoise equivalent power
PDMSPolydimethylsiloxane
PECVDPlasma enhanced chemical vapor deposition
PEDOT:EVAPoly(3,4-ethylenedioxy-thiophene):poly(ethylene-co-vinyl acetate)
PENPolyethylenenaphthalate
PETPolyethylene terephthalate
PIPolyimide
PLQYPhotoluminescence quantum yield
PMMAPoly(methyl methacrylimide)
PPGPhotoplethysmography
PSPolystyrene
PVDFPolyvinylidene fluoride
Variables
hPlanck’s constant
cSpeed of light
dChannel length of photodetector
D*Specific detectivity
fBandwidth
GPhotoconductive gain
qElementary electron charge
IdarkDark current
IlightLight current
PinPower density of incident light
PmaxMaximum detectable light density
PminMinimum detectable light density
RResponsivity
SEffective area of photodetector
VBias volatge
λWavelength of light
τfallFalling time
τlifetimeCarrier lifetime
τriseRising time
τtransitCarrier transit time
μCarrier mobility

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (Grant No. 2019YFB1503200), the National Natural Science Foundation of China (Grant Nos. 51905203 and 52275562), and the Fund from the Science, Technology, and Innovation Commission of Shenzhen Municipality, China (Grant No. JCYJ20190809100209531).

Conflict of Interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as appropriate credit is given to the original author(s) and source, a link to the Creative Commons license is provided, and the changes made are indicated.
The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Visit http://creativecommons.org/licenses/by/4.0/ to view a copy of this license.

RIGHTS & PERMISSIONS

2023 The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(11437 KB)

Accesses

Citations

Detail

Sections
Recommended

/