Effects of environmental media on the transmission of an inductive link in wireless microsystems

Lei DONG, Li-Feng WANG, Qing-An HUANG

PDF(157 KB)
PDF(157 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 554-556. DOI: 10.1007/s11465-017-0450-1
SHORT COMMUNICATION
SHORT COMMUNICATION

Effects of environmental media on the transmission of an inductive link in wireless microsystems

Author information +
History +

Abstract

An inductive link between two magnetically coupled coils in wireless microsystems is modeled by considering an additional parasitic capacitive link to describe the effect of environmental media. With a system of inductor-capacitor passive wireless sensors, the effects of environmental media are studied theoretically and experimentally for the first time. Results suggest that the capacitive link is non-negligible when the distance between the two coupled coils is comparable with the coupling area, particularly when the environmental medium has a large dielectric constant.

Keywords

capacitive link / monitoring correction / passive wireless sensor

Cite this article

Download citation ▾
Lei DONG, Li-Feng WANG, Qing-An HUANG. Effects of environmental media on the transmission of an inductive link in wireless microsystems. Front. Mech. Eng., 2017, 12(4): 554‒556 https://doi.org/10.1007/s11465-017-0450-1

References

[1]
Wise K D, Anderson D J, Hetke J F, Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proceedings of the IEEE, 2004, 92(1): 76–97 
CrossRef Google scholar
[2]
Ho J S, Kim S, Poon A S Y. Midfield wireless powering for implantable systems. Proceedings of the IEEE, 2013, 101(6): 1369–1378
CrossRef Google scholar
[3]
Allen M G. Microfabricated implantable wireless microsystems: Permanent and biodegradable implementations. In: Proceeding IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco: IEEE, 2014, 1–4
[4]
Schuylenbergh K V, Puers R. Inductive Powering: Basic Theory and Application to Biomedical Systems. New York: Springer, 2009
[5]
Drossos A, Santomaa V, Kuster N. The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300–3000 MHz. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(11): 1988–1995
CrossRef Google scholar
[6]
Chiu H W, Chuang J, Lu C C, . In situ measurement of tissue impedance using an inductive coupling interface circuit. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7(3): 225–235
CrossRef Google scholar
[7]
Haus H A. Waves and Fields in Optoelectronics. London: Prentice-Hall, 1984.
[8]
Jow U M, Ghovanloo M. Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(5): 339–347
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61136006 and 61401084) and the National High Technology Research and Development Program of China (Grant No. 2015AA042602).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(157 KB)

Accesses

Citations

Detail

Sections
Recommended

/