Power performance of circular piezoelectric diaphragm generators

TANG Kehong1, KAN Junwu1, YANG Zhigang1, CHENG Guangming1, PENG Taijiang2

PDF(308 KB)
PDF(308 KB)
Front. Mech. Eng. ›› 2008, Vol. 3 ›› Issue (4) : 434-440. DOI: 10.1007/s11465-008-0069-3

Power performance of circular piezoelectric diaphragm generators

  • TANG Kehong1, KAN Junwu1, YANG Zhigang1, CHENG Guangming1, PENG Taijiang2
Author information +
History +

Abstract

Energy generation performance of a piezoelectric generator depends mainly on several elements such as the structural style, boundary conditions, geometry parameters, materials, vibration-source frequency, and external load. To obtain the optimal energy-harvesting device, the Raleigh method is used to establish the analysis model of circular piezoelectric composite diaphragms. Simply supported and clamped boundary conditions were considered. The relationships between the output power and the structural parameters of piezoelectric composite diaphragms, and the external load resistance and frequency were shown. Given the correlative material parameters and boundary conditions, the output power, using structural parameters, external load, or vibrating frequency as variables, can be calculated. Simulation results show that there are optimal structural parameters and load for a composite diaphragm to achieve the maximum output power. A piezoelectric diaphragm generator with given dimensions tends to achieve higher output power under clamped boundary conditions than that under simply supported boundary conditions.

Cite this article

Download citation ▾
TANG Kehong, KAN Junwu, YANG Zhigang, CHENG Guangming, PENG Taijiang. Power performance of circular piezoelectric diaphragm generators. Front. Mech. Eng., 2008, 3(4): 434‒440 https://doi.org/10.1007/s11465-008-0069-3

References

1. Henry A S, Daniel J I, Gyuhae P . A review of power harvesting from vibration using piezoelectricmaterials. The Shock and Vibration Digest, 2004, 36(3): 197–205. doi:10.1177/0583102404043275
2. Ericka M, Vasic D, Costa F, et al.. Energy harvesting from vibration using a piezoelectricmembrane. J Phys IV France, 2005, 128:187–193. doi:10.1051/jp4:2005128028
3. Jeon Y B, Sood R, Jeong J H, et al.. MEMS power generator with transverse mode thinfilm PZT. Sensors and Actuators A, 2005,122:16–22. doi:10.1016/j.sna.2005.04.017
4. Lu F, Lee HP, Lim S P . Modelling and analysis of micro piezoelectric power generatorsfor micro electromechanical-systems applications. Smart Mater Struct, 2004, 13: 57–63. doi:10.1088/0964-1726/13/1/007
5. Monturet V, Nogarede B . Optimal dimensioning of apiezoelectric bimorph actuator. Eur PhysJ AP, 2002, 17: 107–118. doi:10.1051/epjap:2002003
6. Cho J, Anderson M, Richards R, et al.. Optimization of electromechanical coupling fora thin-film PZT membrane: I. Modeling.J Micromech Microeng, 2005, 15: 1797–1803. doi:10.1088/0960-1317/15/10/002
7. Cho J, Anderson M, Richards R, et al.. Optimization of electromechanical coupling fora thin-film PZT membrane: II. Experiment.J Micromech Microeng, 2005, 15: 1804–1809. doi:10.1088/0960-1317/15/10/003
8. Sunghwan K, William W C, WANG Q M . Piezoelectric Energy harvesting with a clamped circularplate: Analysis. Journal of intelligentmaterial systems and structures, 2005, 16: 847–854. doi:10.1177/1045389X05054044
9. Shad R, Paul K W, Jan R . A study of low level vibrations as a power source forwireless sensor nodes. Computer Communications, 2003, 26: 1131–1144
10. Lu Deming . Principle of transducer. Qingdao: Ocean University of Qingdao, 2001
11. Ng T H, Liao W H . Sensitivity analysis andenergy harvesting for a self-powered piezoelectric sensor. Journal of intelligent material system and structure, 2005, 16: 785–797. doi:10.1177/1045389X05053151
AI Summary AI Mindmap
PDF(308 KB)

Accesses

Citations

Detail

Sections
Recommended

/