Parameter prediction in laser bending of aluminum alloy sheet

WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong

Front. Mech. Eng. ›› 2008, Vol. 3 ›› Issue (3) : 293 -298.

PDF (157KB)
Front. Mech. Eng. ›› 2008, Vol. 3 ›› Issue (3) : 293 -298. DOI: 10.1007/s11465-008-0046-x

Parameter prediction in laser bending of aluminum alloy sheet

Author information +
History +
PDF (157KB)

Abstract

Based on the basic platform of BP neural networks, a BP network model is established to predict the bending angle in the laser bending process of an aluminum alloy sheet (1–2 mm in thickness) and to optimize laser bending parameters for bending control. The sample experimental data is used to train the BP network. The nonlinear regularities of sample data are fitted through the trained BP network; the predicted results include laser bending angles and parameters. Experimental results indicate that the prediction allowance is controlled less than 5%–8% and can provide a theoretical and experimental basis for industry purpose.

Keywords

laser bending / prompt heating / aluminum alloy sheet / parameter prediction

Cite this article

Download citation ▾
WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong. Parameter prediction in laser bending of aluminum alloy sheet. Front. Mech. Eng., 2008, 3(3): 293-298 DOI:10.1007/s11465-008-0046-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (157KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/