Cover illustration
Dysregulated gut microbiome might alter the basal immune status of patients with COVID-19 and thereby influence the severity of the COVID-19. (Courtesy of Drs. Yun Tan and Saijuan Chen. See pages 263-275 by Xiaoguang Xu et al. for more information.)
Download coverCancer imposes a severe threat to people’s health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Studies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.
The record speed at which Chinese scientists identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and shared its genomic sequence with the world, has greatly facilitated the development of coronavirus disease (COVID-19) diagnostics, drugs, and vaccines. It is unprecedented in pandemic control history to develop a dozen successful vaccines in the first year and to immunize over half of the global population in the second year, due to the efforts of the scientific community, biopharmaceutical industry, and regulatory agencies worldwide. The challenges are both great and multidimensional due to the rapid emergence of virus variants and waning of vaccine immunity. Vaccination strategies need to adapt to these challenges to keep population immunity above the herd immunity threshold, by increasing vaccine coverage, especially for older adults and young people, and providing timely booster doses with homologous or heterologous vaccine boosts. Further research should be undertaken to develop more effective vaccines against SARS-CoV-2 variants and to understand the best prime-boost vaccine combinations and immunization strategies to provide sufficient and sustainable immune protection against COVID-19.
Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.
Immune therapy has become the fourth approach after surgery, chemotherapy, and radiotherapy in cancer treatment. Many immune checkpoints were identified in the last decade since ipilimumab, which is the first immune checkpoint inhibitor to cytotoxic T-lymphocyte associated protein 4, had been approved by the US Food and Drug Administration (FDA) for the treatment of unresectable or metastatic melanoma in 2011. The use of several antibody drugs that target PD1/PD-L1 for various cancer treatments has been approved by the FDA. However, fewer people are benefitting from immune checkpoint inhibitor treatment in solid cancers. Approximately 80% of patients do not respond appropriately because of primary or acquired therapeutic resistance. Along with the characterization of more immune checkpoints, the combinatory treatment of multi-immune checkpoint inhibitors becomes a new option when monotherapy could not receive a good response. In this work, the author focuses on the combination therapy of multiple immune checkpoints (does not include targeted therapy of oncogenes or chemotherapy), introduces the current progression of multiple immune checkpoints and their related inhibitors, and discusses the advantages of combination therapy, as well as the risk of immune-related adverse events.
Hepatocellular carcinoma (HCC), which makes up the majority of liver cancer, is induced by the infection of hepatitis B/C virus. Biomarkers are needed to facilitate the early detection of HCC, which is often diagnosed too late for effective therapy. The tRNA-derived small RNAs (tsRNAs) play vital roles in tumorigenesis and are stable in circulation. However, the diagnostic values and biological functions of circulating tsRNAs, especially for HCC, are still unknown. In this study, we first utilized RNA sequencing followed by quantitative reverse-transcription PCR to analyze tsRNA signatures in HCC serum. We identified tRF-Gln-TTG-006, which was remarkably upregulated in HCC serum (training cohort: 24 HCC patients vs. 24 healthy controls). In the validation stage, we found that tRF-Gln-TTG-006 signature could distinguish HCC cases from healthy subjects with high sensitivity (80.4%) and specificity (79.4%) even in the early stage (Stage I: sensitivity, 79.0%; specificity, 74.8%; 155 healthy controls vs. 153 HCC patients from two cohorts). Moreover, in vitro studies indicated that circulating tRF-Gln-TTG-006 was released from tumor cells, and its biological function was predicted by bioinformatics assay and validated by colony formation and apoptosis assays. In summary, our study demonstrated that serum tsRNA signature may serve as a novel biomarker of HCC.
Chronic stress impairs radial neural stem cell (rNSC) differentiation and adult hippocampal neurogenesis (AHN), whereas promoting AHN can increase stress resilience against depression. Therefore, investigating the mechanism of neural differentiation and AHN is of great importance for developing antidepressant drugs. The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against depression. However, whether CBD can modulate rNSC differentiation and hippocampal neurogenesis is unknown. Here, by using the chronic restraint stress (CRS) mouse model, we showed that hippocampal rNSCs mostly differentiated into astrocytes under stress conditions. Moreover, transcriptome analysis revealed that the FoxO signaling pathway was involved in the regulation of this process. The administration of CBD rescued depressive-like symptoms in CRS mice and prevented rNSCs overactivation and differentiation into astrocyte, which was partly mediated by the modulation of the FoxO signaling pathway. These results revealed a previously unknown neural mechanism for neural differentiation and AHN in depression and provided mechanistic insights into the antidepressive effects of CBD.
The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3′-terminal nucleotides via 2′-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2′-O-methylation at the RNA 3′-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3′-terminal 2′-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3′-terminal 2′-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3′-terminal 2′-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3′-terminal 2′-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.
Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.
Emerging evidence indicates that the gut microbiome contributes to the host immune response to infectious diseases. Here, to explore the role of the gut microbiome in the host immune responses in COVID-19, we conducted shotgun metagenomic sequencing and immune profiling of 14 severe/critical and 24 mild/moderate COVID-19 cases as well as 31 healthy control samples. We found that the diversity of the gut microbiome was reduced in severe/critical COVID-19 cases compared to mild/moderate ones. We identified the abundance of some gut microbes altered post-SARS-CoV-2 infection and related to disease severity, such as Enterococcus faecium, Coprococcus comes, Roseburia intestinalis, Akkermansia muciniphila, Bacteroides cellulosilyticus and Blautia obeum. We further analyzed the correlation between the abundance of gut microbes and host responses, and obtained a correlation map between clinical features of COVID-19 and 16 severity-related gut microbe, including Coprococcus comes that was positively correlated with CD3+/CD4+/CD8+ lymphocyte counts. In addition, an integrative analysis of gut microbiome and the transcriptome of peripheral blood mononuclear cells (PBMCs) showed that genes related to viral transcription and apoptosis were up-regulated in Coprococcus comes low samples. Moreover, a number of metabolic pathways in gut microbes were also found to be differentially enriched in severe/critical or mild/moderate COVID-19 cases, including the superpathways of polyamine biosynthesis II and sulfur oxidation that were suppressed in severe/critical COVID-19. Together, our study highlighted a potential regulatory role of severity related gut microbes in the immune response of host.
We aimed to evaluate the effectiveness and safety of single-course initial regimens in patients with low-risk gestational trophoblastic neoplasia (GTN). In this trial (NCT01823315), 276 patients were analyzed. Patients were allocated to three initiated regimens: single-course methotrexate (MTX), single-course MTX+ dactinomycin (ACTD), and multi-course MTX (control arm). The primary endpoint was the complete remission (CR) rate by initial drug(s). The primary CR rate was 64.4% with multi-course MTX in the control arm. For the single-course MTX arm, the CR rate was 35.8% by one course; it increased to 59.3% after subsequent multi-course MTX, with non-inferiority to the control (difference –5.1%, 95% confidence interval (CI) –19.4% to 9.2%, P=0.014). After further treatment with multi-course ACTD, the CR rate (93.3%) was similar to that of the control (95.2%, P=0.577). For the single-course MTX+ACTD arm, the CR rate was 46.7% by one course, which increased to 89.1% after subsequent multi-course, with non-inferiority (difference 24.7%, 95% CI 12.8%–36.6%, P<0.001) to the control. It was similar to the CR rate by MTX and further ACTD in the control arm (89.1% vs. 95.2%, P=0.135). Four patients experienced recurrence, with no death, during the 2-year follow-up. We demonstrated that chemotherapy initiation with single-course MTX may be an alternative regimen for patients with low-risk GTN.
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has shown impressive efficacy in treating B-cell malignancies. A single-center phase I dose-escalation study was conducted to evaluate the safety and efficacy of T cells transduced with CBM.CD19 CAR, a second-generation anti-CD19 CAR bearing 4-1BB costimulatory molecule, for the treatment of patients with refractory diffuse large B-cell lymphoma (DLBCL). Ten heavily treated patients with refractory DLBCL were given CBM.CD19 CAR-T cell (C-CAR011) treatment. The overall response rate was 20% and 50% at 4 and 12 weeks after the infusion of C-CAR011, respectively, and the disease control rate was 60% at 12 weeks after infusion. Treatment-emergent adverse events occurred in all patients. The incidence of cytokine release syndrome in all grades and grade≥3 was 90% and 0, respectively, which is consistent with the safety profile of axicabtagene ciloleucel and tisagenlecleucel. Neurotoxicity or other dose-limiting toxicities was not observed in any dose cohort of C-CAR011 therapy. Antitumor efficacy was apparent across dose cohorts. Therefore, C-CAR011 is a safe and effective therapeutic option for Chinese patients with refractory DLBCL, and further large-scale clinical trials are warranted.
The association among plasma trimethylamine-N-oxide (TMAO), FMO3 polymorphisms, and chronic heart failure (CHF) remains to be elucidated. TMAO is a microbiota-dependent metabolite from dietary choline and carnitine. A prospective study was performed including 955 consecutively diagnosed CHF patients with reduced ejection fraction, with the longest follow-up of 7 years. The concentrations of plasma TMAO and its precursors, namely, choline and carnitine, were determined by liquid chromatography-mass spectrometry, and the FMO3 E158K polymorphisms (rs2266782) were genotyped. The top tertile of plasma TMAO was associated with a significant increment in hazard ratio (HR) for the composite outcome of cardiovascular death or heart transplantation (HR=1.47, 95% CI=1.13–1.91, P=0.004) compared with the lowest tertile. After adjustments of the potential confounders, higher TMAO could still be used to predict the risk of the primary endpoint (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). This result was also obtained after further adjustment for carnitine (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). The FMO3 rs2266782 polymorphism was associated with the plasma TMAO concentrations in our cohort, and lower TMAO levels were found in the AA-genotype. Thus, higher plasma TMAO levels indicated increased risk of the composite outcome of cardiovascular death or heart transplantation independent of potential confounders, and the FMO3 AA-genotype in rs2266782 was related to lower plasma TMAO levels.