Akkermansia muciniphila PROBIO therapy promotes arginine biosynthesis and reverses reproductive impairments in polycystic ovary syndrome rats

Yifan Wu , Cong Wang , Juanjuan Yu , Xiying Zhou , Yujiao Wang , Zi-Jiang Chen , Yanzhi Du

Front. Med. ››

PDF (4989KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1161-3
RESEARCH ARTICLE

Akkermansia muciniphila PROBIO therapy promotes arginine biosynthesis and reverses reproductive impairments in polycystic ovary syndrome rats

Author information +
History +
PDF (4989KB)

Abstract

Polycystic ovary syndrome (PCOS) is a prevalent chronic disorder characterized by reproductive, endocrine, and metabolic abnormalities in women worldwide. Increasing evidence has implicated the gut microbiota in the pathogenesis of PCOS, raising the possibility that probiotic interventions could offer therapeutic benefits. Akkermansia muciniphila (AKK), known for its metabolic and immunomodulatory properties, remains underexplored in the context of PCOS. In this study, we utilized a dehydroepiandrosterone (DHEA)-induced PCOS model in Sprague-Dawley (SD) rats to investigate the therapeutic potential of a novel AKK strain, PROBIO (referred to as AP). Treatment with AP significantly alleviated multiple PCOS-related phenotypes, including hyperandrogenism, elevated luteinizing hormone to follicle-stimulating hormone (LH/FSH) ratio, disrupted estrous cycle, abnormal ovarian morphology, and impaired glucose metabolism. Mechanistically, 16S rRNA gene sequencing and untargeted metabolomics revealed that AP partially exerted its beneficial effects by modulating DHEA-induced gut microbiota dysbiosis. Notably, metabolomic profiling indicated enhanced arginine biosynthesis and increased serum L-arginine levels in AP-treated rats. Consistently, in vivo supplementation with L-arginine reproduced the therapeutic effects of AP, ameliorating hyperandrogenism, LH/FSH imbalance, ovarian abnormalities, and estrous cycle irregularities in DHEA-induced PCOS rats. Taken together, these findings suggest that AP ameliorates PCOS phenotypes by restoring gut microbial composition, modulating host metabolism, and promoting L-arginine biosynthesis. This study highlights the potential of AP as a novel probiotic-based intervention for PCOS and underscores the therapeutic relevance of L-arginine in managing this disorder.

Keywords

Akkermansia muciniphila / gut microbiome / L-arginine / polycystic ovary syndrome / reproductive impairment

Cite this article

Download citation ▾
Yifan Wu, Cong Wang, Juanjuan Yu, Xiying Zhou, Yujiao Wang, Zi-Jiang Chen, Yanzhi Du. Akkermansia muciniphila PROBIO therapy promotes arginine biosynthesis and reverses reproductive impairments in polycystic ovary syndrome rats. Front. Med. DOI:10.1007/s11684-025-1161-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joham AE , Norman RJ , Stener-Victorin E , Legro RS , Franks S , Moran LJ , Boyle J , Teede HJ . Polycystic ovary syndrome. Lancet Diabetes Endocrinol 2022; 10(9): 668–680

[2]

Singh R , Kaur S , Yadav S , Bhatia S . Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol Metab 2023; 34(4): 194–215

[3]

Qi X , Yun C , Sun L , Xia J , Wu Q , Wang Y , Wang L , Zhang Y , Liang X , Wang L , Gonzalez FJ , Patterson AD , Liu H , Mu L , Zhou Z , Zhao Y , Li R , Liu P , Zhong C , Pang Y , Jiang C , Qiao J . Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 2019; 25(8): 1225–1233

[4]

Han Q , Wang J , Li W , Chen ZJ , Du Y . Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome 2021; 9(1): 101

[5]

Yun C , Yan S , Liao B , Ding Y , Qi X , Zhao M , Wang K , Zhuo Y , Nie Q , Ye C , Xia P , Ma M , Li R , Jiang C , Qiao J , Pang Y . The microbial metabolite agmatine acts as an FXR agonist to promote polycystic ovary syndrome in female mice. Nat Metab 2024; 6(5): 947–962

[6]

Chu W , Han Q , Xu J , Wang J , Sun Y , Li W , Chen ZJ , Du Y . Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertil Steril 2020; 113(6): 1286–1298.e4

[7]

Li S , Zhai J , Chu W , Geng X , Wang D , Jiao L , Lu G , Chan W-Y , Sun K , Sun Y , Chen ZJ , Du Y . Alleviation of Limosilactobacillus reuteri in polycystic ovary syndrome protects against circadian dysrhythmia-induced dyslipidemia via capric acid and GALR1 signaling. NPJ Biofilms Microbiomes 2023; 9(1): 47

[8]

Cani PD , Depommier C , Derrien M , Everard A , de Vos WM . Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; 19(10): 625–637

[9]

Chu W , Li S , Geng X , Wang D , Zhai J , Lu G , Chan WY , Chen ZJ , Du Y . Long-term environmental exposure of darkness induces hyperandrogenism in PCOS via melatonin receptor 1A and aromatase reduction. Front Cell Dev Biol 2022; 10: 954186

[10]

Sundaram K , Teng Y , Mu J , Xu Q , Xu F , Sriwastva MK , Zhang L , Park JW , Zhang X , Yan J , Zhang SQ , Merchant ML , Chen S , McClain CJ , Dryden GW , Zhang HG . Outer membrane vesicles released from garlic exosome‐like nanoparticles (GaELNs) train gut bacteria that reverses type 2 diabetes via the gut‐brain axis. Small 2024; 20(20): 2308680

[11]

Nie Q , Luo X , Wang K , Ding Y , Jia S , Zhao Q , Li M , Zhang J , Zhuo Y , Lin J , Guo C , Zhang Z , Liu H , Zeng G , You J , Sun L , Lu H , Ma M , Jia Y , Zheng MH , Pang Y , Qiao J , Jiang C . Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024; 187(11): 2717–2734.e33

[12]

Liu R , Zhang C , Shi Y , Zhang F , Li L , Wang X , Ling Y , Fu H , Dong W , Shen J , Reeves A , Greenberg AS , Zhao L , Peng Y , Ding X . Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 2017; 8: 324

[13]

Huang J , Chen P , Xiang Y , Liang Q , Wu T , Liu J , Zeng Y , Zeng H , Liang X , Zhou C . Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells. Int Immunopharmacol 2022; 107: 108717

[14]

Ma X , LvjunYan X , Yu H , Guo Y , He S , Wen T , Yu W . The alleviating effect of Akkermansia muciniphila PROBIO on AOM/DSS-induced colorectal cancer in mice and its regulatory effect on gut microbiota. J Funct Foods 2024; 114: 106091

[15]

Li X , Hu S , Zhu Q , Yao G , Yao J , Li J , Wang Y , Ding Y , Qi J , Xu R , Zhao H , Zhu Z , Du Y , Sun K , Sun Y . Addressing the role of 11β-hydroxysteroid dehydrogenase type 1 in the development of polycystic ovary syndrome and the putative therapeutic effects of its selective inhibition in a preclinical model. Metabolism 2021; 119: 154749

[16]

Higarza SG , Arboleya S , Arias JL , Gueimonde M , Arias N . Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2021; 13(1): 1880240

[17]

Souza MK , Moraes MR , Rosa TS , Passos CS , Neves RVP , Haro AS , Cenedeze MA , Arias SCA , Fujihara CK , Teixeira SA , Muscará MN , Câmara NOS , Pacheco e Silva Filho A . L-arginine supplementation blunts resistance exercise improvement in rats with chronic kidney disease. Life Sci 2019; 232: 116604

[18]

Chu W , Zhai J , Xu J , Li S , Li W , Chen ZJ , Du Y . Continuous light-induced PCOS-like changes in reproduction, metabolism, and gut microbiota in Sprague-Dawley rats. Front Microbiol 2020; 10: 3145

[19]

Ioannou A , Berkhout MD , Geerlings SY , Belzer C . Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23(3): 162–177

[20]

Sinha AK , Laursen MF , Licht TR . Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33(4): 397–407

[21]

Qi X , Yun C , Pang Y , Qiao J . The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021; 13(1): 1–21

[22]

Zeng C . Advances in cancer treatment: the role of new technologies and research. Cell Invest 2025; 1(1): 100001

[23]

Depommier C , Everard A , Druart C , Plovier H , Hul MV , Vieira-Silva S , Falony G , Raes J , Maiter D , Delzenne NM , de Barsy M , Loumaye A , Hermans MP , Thissen JP , de Vos WM , Cani PD . Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019; 25(7): 1096–1103

[24]

Wang M , Zhao D , Xu L , Guo W , Nie L , Lei Y , Long Y , Liu M , Wang Y , Zhang X , Zhang L , Li H , Zhang J , Yuan D , Yue L . Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism 2019; 94: 47–58

[25]

Singh S , Kaur M , Beri A , Kaur A . Significance of LHCGR polymorphisms in polycystic ovary syndrome: an association study. Sci Rep 2023; 13(1): 22841

[26]

McAllister JM , Legro RS , Modi BP , Strauss JF III . Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 2015; 26(3): 118–124

[27]

Yu L , Wang L , Tao W , Zhang W , Yang S , Wang J , Fei J , Peng R , Wu Y , Zhen X , Shao H , Gu W , Li R , Wu BL , Wang H . LHCGR and ALMS1 defects likely cooperate in the development of polycystic ovary syndrome indicated by double-mutant mice. J Genet Genomics 2021; 48(5): 384–395

[28]

O’Reilly M , Gathercole L , Capper F , Arlt W , Tomlinson J . Effect of insulin on AKR1C3 expression in female adipose tissue: in-vivo and in-vitro study of adipose androgen generation in polycystic ovary syndrome. Lancet 2015; 385(Special Issue): S16

[29]

Zhao H , Chen R , Zheng D , Xiong F , Jia F , Liu J , Zhang L , Zhang N , Zhu S , Liu Y , Zhao L , Liu X . Modified Banxia Xiexin Decoction ameliorates polycystic ovarian syndrome with insulin resistance by regulating intestinal microbiota. Front Cell Infect Microbiol 2022; 12: 854796

[30]

Shi F , Boncan DAT , Wan HT , Chan TF , Zhang EL , Lai KP , Wong CKC . Hepatic metabolism gene expression and gut microbes in offspring, subjected to in-utero PFOS exposure and postnatal diet challenges. Chemosphere 2022; 308: 136196

[31]

Cani PD , Knauf C . A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metab 2021; 33(6): 1073–1075

[32]

Szlas A , Kurek JM , Krejpcio Z . The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism—a review. Nutrients 2022; 14(5): 961

[33]

Canale FP , Basso C , Antonini G , Perotti M , Li N , Sokolovska A , Neumann J , James MJ , Geiger S , Jin W , Theurillat JP , West KA , Leventhal DS , Lora JM , Sallusto F , Geiger R . Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 2021; 598(7882): 662–666

[34]

Kim DY , Park JY , Gee HY . Lactobacillus plantarum ameliorates NASH-related inflammation by upregulating l-arginine production. Exp Mol Med 2023; 55(11): 2332–2345

[35]

Xie K , Cai W , Li L , Yu B , Luo Y , Huang Z , Mao X , Yu J , Zheng P , Yan H , Li H , He J . Probiotic administration aggravates dextran sulfate sodium salt-induced inflammation and intestinal epithelium disruption in weaned pig. Anim Microbiome 2025; 7(1): 8

[36]

Wu G , Bazer FW , Davis TA , Kim SW , Li P , Rhoads JM , Satterfield MC , Smith SB , Spencer TE , Yin Y . Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37(1): 153–168

[37]

Yang H , Li C , Che M , Li Y , Feng R , Sun C . Gut microbiota mediates the anti-obesity effect of intermittent fasting by inhibiting intestinal lipid absorption. J Nutr Biochem 2023; 116: 109318

[38]

Awonuga AO , Camp OG , Abu-Soud HM . A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21(1): 111

[39]

Sylus AM , Nandeesha H , Sridhar MG , Chitra T , Sreenivasulu K . Clomiphene citrate increases nitric oxide, interleukin-10 and reduces matrix metalloproteinase-9 in women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2018; 228: 27–31

[40]

Li T , Zhang T , Wang H , Zhang Q , Gao H , Liu R , Yin C . The ADMA–DDAH1 axis in ovarian apoptosis of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2023; 225: 106180

[41]

Singh A , Lal B , Kumar P , Parhar IS , Millar RP . Nitric oxide mediated kisspeptin regulation of steroidogenesis and gametogenesis in the catfish, Clarias batrachus. Cell Tissue Res 2024; 397(2): 111–124

[42]

Dutta S , Sengupta P . The role of nitric oxide on male and female reproduction. Malays J Med Sci 2022; 29(2): 18–30

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4989KB)

Supplementary files

Supplementary materials

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/