Pathological progression of osteoarthritis: a perspective on subchondral bone

Xuefei Li , Wenhua Chen , Dan Liu , Pinghua Chen , Shiyun Wang , Fangfang Li , Qian Chen , Shunyi Lv , Fangyu Li , Chen Chen , Suxia Guo , Weina Yuan , Pan Li , Zhijun Hu

Front. Med. ›› 2024, Vol. 18 ›› Issue (2) : 237 -257.

PDF (1648KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (2) : 237 -257. DOI: 10.1007/s11684-024-1061-y
REVIEW

Pathological progression of osteoarthritis: a perspective on subchondral bone

Author information +
History +
PDF (1648KB)

Abstract

Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as “top to bottom.” However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone’s physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the “bottom-up” progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.

Keywords

osteoarthritis / subchondral bone / OPG/RANKL/RANK / CXCL12/CXCR4

Cite this article

Download citation ▾
Xuefei Li, Wenhua Chen, Dan Liu, Pinghua Chen, Shiyun Wang, Fangfang Li, Qian Chen, Shunyi Lv, Fangyu Li, Chen Chen, Suxia Guo, Weina Yuan, Pan Li, Zhijun Hu. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front. Med., 2024, 18(2): 237-257 DOI:10.1007/s11684-024-1061-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GBD 2017 Disease, Injury Incidence, Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789–1858

[2]

Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage 2022; 30(2): 196–206

[3]

Yunus MHM, Nordin A, Kamal H. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas) 2020; 56(11): 614–627

[4]

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697–1707

[5]

Aizah N, Chong PP, Kamarul T. Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of osteoarthritis. Cartilage 2021; 13(2_suppl): 1322S–1333S

[6]

Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764

[7]

Hügle T, Geurts J. What drives osteoarthritis? Synovial versus subchondral bone pathology.. Rheumatology (Oxford) 2017; 56(9): 1461–1471

[8]

Mansell JP, Collins C, Bailey AJ. Bone, not cartilage, should be the major focus in osteoarthritis. Nat Clin Pract Rheumatol 2007; 3(6): 306–307

[9]

Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 2012; 23(Suppl 8): S847–S851

[10]

Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80(4): 413–422

[11]

Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021; 17(1): 47–57

[12]

Darbandi M, Shadmani FK, Miryan M, Ghalandari M, Mohebi M, Jam SA, Pasdar Y. The burden of osteoarthritis due to high body mass index in Iran from 1990 to 2019. Sci Rep 2023; 13(1): 11710–11719

[13]

Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med 2019; 53(23): 1454–1463

[14]

Papalia R, Torre G, Zampogna B, Vorini F, Grasso A, Denaro V. Sport activity as risk factor for early knee osteoarthritis. J Biol Regul Homeost Agents 2019; 33(2 Suppl. 1): 29–37, XIX

[15]

Liang X, Chou OHI, Cheung CL, Cheung BMY. Is hypertension associated with arthritis? The United States national health and nutrition examination survey 1999–2018.. Ann Med 2022; 54(1): 1767–1775

[16]

Peshkova M, Lychagin A, Lipina M, Di Matteo B, Anzillotti G, Ronzoni F, Kosheleva N, Shpichka A, Royuk V, Fomin V, Kalinsky E, Timashev P, Kon E. Gender-related aspects in osteoarthritis development and progression: a review. Int J Mol Sci 2022; 23(5): 2767–2788

[17]

Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M; arcOGEN Consortium; HUNT All-In Pain; ARGO Consortium; Regeneron Genetics Center; Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184(18): 4784–4818.e17

[18]

Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8(1): 56–87

[19]

Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 2022; 30(2): 184–195

[20]

Safiri S, Kolahi AA, Smith E, Hill C, Bettampadi D, Mansournia MA, Hoy D, Ashrafi-Asgarabad A, Sepidarkish M, Almasi-Hashiani A, Collins G, Kaufman J, Qorbani M, Moradi-Lakeh M, Woolf AD, Guillemin F, March L, Cross M. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 2020; 79(6): 819–828

[21]

Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, Lin J, Guo A. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol 2022; 74(7): 1172–1183

[22]

Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2163–2196 doi:10.1016/S0140-6736(12)61729-2 PMID:23245607

[23]

Li D, Li S, Chen Q, Xie X. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: a systematic review and meta-analysis. Front Med (Lausanne) 2020; 7: 304–316

[24]

Hong JW, Noh JH, Kim DJ. The prevalence of and demographic factors associated with radiographic knee osteoarthritis in Korean adults aged ≥ 50 years: the 2010–2013 Korea National Health and Nutrition Examination Survey. PLoS One 2020; 15(3): e0230613

[25]

Li Y, Xie W, Xiao W, Dou D. Progress in osteoarthritis research by the national natural science foundation of China. Bone Res 2022; 10(1): 41–53

[26]

Kim C, Linsenmeyer KD, Vlad SC, Guermazi A, Clancy MM, Niu J, Felson DT. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: the Framingham osteoarthritis study. Arthritis Rheumatol 2014; 66(11): 3013–3017

[27]

Fan Z, Yan L, Liu H, Li X, Fan K, Liu Q, Li JJ, Wang B. The prevalence of hip osteoarthritis: a systematic review and meta-analysis. Arthritis Res Ther 2023; 25(1): 51–62

[28]

GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390(10100): 1151–1210

[29]

GBD 2019 Diseases, Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204–1222

[30]

Tang X, Wang S, Zhan S, Niu J, Tao K, Zhang Y, Lin J. The prevalence of symptomatic knee osteoarthritis in China: results from the China health and retirement longitudinal study. Arthritis Rheumatol 2016; 68(3): 648–653

[31]

Driban JB, Harkey MS, Barbe MF, Ward RJ, MacKay JW, Davis JE, Lu B, Price LL, Eaton CB, Lo GH, McAlindon TE. Risk factors and the natural history of accelerated knee osteoarthritis: a narrative review. BMC Musculoskelet Disord 2020; 21(1): 332–343

[32]

Lo J, Chan L, Flynn S. A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update. Arch Phys Med Rehabil 2021; 102(1): 115–131

[33]

Wang SX, Ganguli AX, Bodhani A, Medema JK, Reichmann WM, Macaulay D. Healthcare resource utilization and costs by age and joint location among osteoarthritis patients in a privately insured population. J Med Econ 2017; 20(12): 1299–1306

[34]

Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol 2014; 28(1): 61–71

[35]

Zhou X, Cao H, Yuan Y, Wu W. Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. BioMed Res Int 2020; 2020: 5720360

[36]

Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017; 36(3): 413–425

[37]

Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): a005058

[38]

Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370(1): 53–70

[39]

Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum 2019; 49(3 3S): S36–S38

[40]

Greene GW, Banquy X, Lee DW, Lowrey DD, Yu J, Israelachvili JN. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc Natl Acad Sci USA 2011; 108(13): 5255–5259

[41]

Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis severely decreases the elasticity and hardness of knee joint cartilage: a nanoindentation study. J Clin Med 2019; 8(11): 1865–1876

[42]

Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg 2012; 25(2): 85–97

[43]

Yu J, Liang F, Huang H, Pirttiniemi P, Yu D. Effects of loading on chondrocyte hypoxia, HIF-1α and VEGF in the mandibular condylar cartilage of young rats. Orthod Craniofac Res 2018; 21(1): 41–47

[44]

Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 2009; 27(10): 1347–1352

[45]

Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12(11): 632–644

[46]

Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192(1): 230–237

[47]

Rytky SJO, Huang L, Tanska P, Tiulpin A, Panfilov E, Herzog W, Korhonen RK, Saarakkala S, Finnilä MAJ. Automated analysis of rabbit knee calcified cartilage morphology using micro-computed tomography and deep learning. J Anat 2021; 239(2): 251–263

[48]

Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 419–433

[49]

Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5(2): e001037

[50]

Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 1994; 185(Pt 1): 103–110

[51]

Boyde A. The bone cartilage interface and osteoarthritis. Calcif Tissue Int 2021; 109(3): 303–328

[52]

Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol 2021; 8: 607764

[53]

Taheri S, Winkler T, Schenk LS, Neuerburg C, Baumbach SF, Zustin J, Lehmann W, Schilling AF. Developmental transformation and reduction of connective cavities within the subchondral bone. Int J Mol Sci 2019; 20(3): 770–783

[54]

Holopainen JT, Brama PA, Halmesmäki E, Harjula T, Tuukkanen J, van Weeren PR, Helminen HJ, Hyttinen MM. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 2008; 43(6): 1108–1114

[55]

Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, Weinans H. Adaptation of subchondral bone in osteoarthritis. Biorheology 2004; 41(3–4): 359–368

[56]

Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8(11): 665–673

[57]

Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712

[58]

Fell NLA, Lawless BM, Cox SC, Cooke ME, Eisenstein NM, Shepherd DET, Espino DM. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthritis Cartilage 2019; 27(3): 535–543

[59]

Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 1984; 2(3): 221–234

[60]

Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9(1): 20–33

[61]

Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 2008; 23(2): 223–235

[62]

Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 2015; 72: 71–80

[63]

O’Brien MS, McDougall JJ. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180: 21–28

[64]

Ding R, Zhang N, Wang Q, Wang W. Alterations of the subchondral bone in osteoarthritis: complying with Wolff’s law. Curr Rheumatol Rev 2022; 18(3): 178–185

[65]

Teichtahl AJ, Wluka AE, Wijethilake P, Wang Y, Ghasem-Zadeh A, Cicuttini FM. Wolff’s law in action: a mechanism for early knee osteoarthritis. Arthritis Res Ther 2015; 17(1): 207–216

[66]

Zhang J, Chen S, Chen W, Huang Y, Lin R, Huang M, Wu Y, Zheng L, Li Z, Liao N, Ye J, Liu X. Ultrastructural change of the subchondral bone increases the severity of cartilage damage in osteoporotic osteoarthritis of the knee in rabbits. Pathol Res Pract 2018; 214(1): 38–43

[67]

Chen Y, Hu Y, Yu YE, Zhang X, Watts T, Zhou B, Wang J, Wang T, Zhao W, Chiu KY, Leung FK, Cao X, Macaulay W, Nishiyama KK, Shane E, Lu WW, Guo XE. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res 2018; 33(2): 316–327

[68]

Zamli Z, Robson Brown K, Sharif M. Subchondral bone plate changes more rapidly than trabecular bone in osteoarthritis. Int J Mol Sci 2016; 17(9): 1496–1507

[69]

Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010; 18(5): 691–698

[70]

Botter SM, van Osch GJ, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JP. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 2011; 63(9): 2690–2699

[71]

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol 2020; 82(1): 485–506

[72]

Pu P, Qingyuan M, Weishan W, Fei H, Tengyang M, Weiping Z, Zhoujun Z, Mengyu W, Chao W, Chong S. Protein-degrading enzymes in osteoarthritis. Z Orthop Unfall 2021; 159(1): 54–66

[73]

Tang SY, Herber RP, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 2012; 27(9): 1936–1950

[74]

Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl) 2017; 26(6): e12740

[75]

Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108: 22–45

[76]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019; 393(10182): 1745–1759

[77]

Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S, Cao X, Wan M. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446

[78]

Zhu S, Zhu J, Zhen G, Hu Y, An S, Li Y, Zheng Q, Chen Z, Yang Y, Wan M, Skolasky RL, Cao Y, Wu T, Gao B, Yang M, Gao M, Kuliwaba J, Ni S, Wang L, Wu C, Findlay D, Eltzschig HK, Ouyang HW, Crane J, Zhou FQ, Guan Y, Dong X, Cao X. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019; 129(3): 1076–1093

[79]

Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, Zhao L, Nian B, Zhong TP, Lu W, Zhang H, Cao X, Shah KM, Wang N, Liu M, Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10(1): 27–43

[80]

Ren P, Niu H, Cen H, Jia S, Gong H, Fan Y. Biochemical and morphological abnormalities of subchondral bone and their association with cartilage degeneration in spontaneous osteoarthritis. Calcif Tissue Int 2021; 109(2): 179–189

[81]

Haneda M, Rai MF, Cai L, Brophy RH, O’Keefe RJ, Clohisy JC, Pascual-Garrido C. Distinct pattern of inflammation of articular cartilage and the synovium in early and late hip femoroacetabular impingement. Am J Sports Med 2020; 48(10): 2481–2488

[82]

Kazakia GJ, Kuo D, Schooler J, Siddiqui S, Shanbhag S, Bernstein G, Horvai A, Majumdar S, Ries M, Li X. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage 2013; 21(1): 94–101

[83]

Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167(3): 757–760

[84]

Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi R, Argenson JN, Champsaur P, Pham T, de Paula AM, Lafforgue P. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthritis Cartilage 2010; 18(11): 1429–1435

[85]

Kon E, Ronga M, Filardo G, Farr J, Madry H, Milano G, Andriolo L, Shabshin N. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24(6): 1797–1814

[86]

Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Edwards S, Kuliwaba JS. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage 2019; 27(11): 1653–1662

[87]

Koushesh S, Shahtaheri SM, McWilliams DF, Walsh DA, Sheppard MN, Westaby J, Haybatollahi SM, Howe FA, Sofat N. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 2022; 30(5): 746–755

[88]

Kuttapitiya A, Assi L, Laing K, Hing C, Mitchell P, Whitley G, Harrison A, Howe FA, Ejindu V, Heron C, Sofat N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis 2017; 76(10): 1764–1773

[89]

Nwosu LN, Allen M, Wyatt L, Huebner JL, Chapman V, Walsh DA, Kraus VB. Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25(6): 858–865

[90]

Zarka M, Hay E, Ostertag A, Marty C, Chappard C, Oudet F, Engelke K, Laredo JD, Cohen-Solal M. Microcracks in subchondral bone plate is linked to less cartilage damage. Bone 2019; 123: 1–7

[91]

Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123: 154783

[92]

Tonna S, Poulton IJ, Taykar F, Ho PW, Tonkin B, Crimeen-Irwin B, Tatarczuch L, McGregor NE, Mackie EJ, Martin TJ, Sims NA. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016; 143(4): 648–657

[93]

Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 2016; 16(6): 373–386

[94]

Zhang RK, Li GW, Zeng C, Lin CX, Huang LS, Huang GX, Zhao C, Feng SY, Fang H. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018; 7(11): 587–594

[95]

Jung YK, Han MS, Park HR, Lee EJ, Jang JA, Kim GW, Lee SY, Moon D, Han S. Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018; 8(1): 487–497

[96]

Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, Davis ET, Jones SW, Lord JM. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 2017; 7(1): 3451–3462

[97]

Cao Y, Jansen ID, Sprangers S, Stap J, Leenen PJ, Everts V, de Vries TJ. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol 2016; 100(3): 513–523

[98]

Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 from apoptotic skeletal cells contributes to bone growth defects following dexamethasone therapy in rats. J Bone Miner Res 2020; 35(8): 1612–1613

[99]

Chen L, Yao F, Wang T, Li G, Chen P, Bulsara M, Zheng JJY, Landao-Bassonga E, Firth M, Vasantharao P, Huang Y, Lorimer M, Graves S, Gao J, Carey-Smith R, Papadimitriou J, Zhang C, Wood D, Jones C, Zheng M. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis 2020; 79(6): 811–818

[100]

Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22(8): 1077–1089

[101]

Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 2006; 14(10): 1081–1085

[102]

Anwar A, Hu Z, Zhang Y, Gao Y, Tian C, Wang X, Nazir MU, Wang Y, Zhao Z, Lv D, Zhang Z, Zhang H, Lv G. Multiple subchondral bone cysts cause deterioration of articular cartilage in medial OA of knee: a 3D simulation study. Front Bioeng Biotechnol 2020; 8: 573938

[103]

Perry TA, O’Neill TW, Tolstykh I, Lynch J, Felson DT, Arden NK, Nevitt MC. Magnetic resonance imaging-assessed subchondral cysts and incident knee pain and knee osteoarthritis: data from the multicenter osteoarthritis study. Arthritis Rheumatol 2022; 74(1): 60–69

[104]

Nakasone A, Guang Y, Wise A, Kim L, Babbin J, Rathod S, Mitchell AJ, Gerstenfeld LC, Morgan EF. Structural features of subchondral bone cysts and adjacent tissues in hip osteoarthritis. Osteoarthritis Cartilage 2022; 30(8): 1130–1139

[105]

von Rechenberg B, Guenther H, McIlwraith CW, Leutenegger C, Frisbie DD, Akens MK, Auer JA. Fibrous tissue of subchondral cystic lesions in horses produce local mediators and neutral metalloproteinases and cause bone resorption in vitro. Vet Surg 2000; 29(5): 420–429

[106]

Dürr HD, Martin H, Pellengahr C, Schlemmer M, Maier M, Jansson V. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand 2004; 75(5): 554–558

[107]

Cox LG, Lagemaat MW, van Donkelaar CC, van Rietbergen B, Reilingh ML, Blankevoort L, van Dijk CN, Ito K. The role of pressurized fluid in subchondral bone cyst growth. Bone 2011; 49(4): 762–768

[108]

Iijima H, Aoyama T, Ito A, Yamaguchi S, Nagai M, Tajino J, Zhang X, Kuroki H. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis Cartilage 2015; 23(9): 1563–1574

[109]

Wang W, Ding R, Zhang N, Hernigou P. Subchondral bone cysts regress after correction of malalignment in knee osteoarthritis: comply with Wolff’s law. Int Orthop 2021; 45(2): 445–451

[110]

Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15(6): 223–235

[111]

Chan PMB, Wen C, Yang WC, Yan C, Chiu K. Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem?. Med Hypotheses 2017; 109: 80–83

[112]

Sumino H, Ichikawa S, Kasama S, Takahashi T, Kumakura H, Takayama Y, Kanda T, Sakamaki T, Kurabayashi M. Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 2006; 55(3): 212–218

[113]

Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 2005; 13(7): 632–641

[114]

Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23(11): 1825–1834

[115]

Feng K, Ge Y, Chen Z, Li X, Liu Z, Li X, Li H, Tang T, Yang F, Wang X. Curcumin inhibits the PERK-eIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxid Med Cell Longev 2019; 2019: 8574386

[116]

Faust HJ, Zhang H, Han J, Wolf MT, Jeon OH, Sadtler K, Peña AN, Chung L, Maestas DR Jr, Tam AJ, Pardoll DM, Campisi J, Housseau F, Zhou D, Bingham CO 3rd, Elisseeff JH. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest 2020; 130(10): 5493–5507

[117]

Xue JF, Shi ZM, Zou J, Li XL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 2017; 89: 1252–1261

[118]

Astephen Wilson JL, Kobsar D. Osteoarthritis year in review 2020: mechanics. Osteoarthritis Cartilage 2021; 29(2): 161–169

[119]

Mobasheri A, Matta C, Zákány R, Musumeci G. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015; 80(3): 237–244

[120]

Shen J, Abu-Amer Y, O’Keefe RJ, McAlinden A. Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 2017; 58(1): 49–63

[121]

Ruscitto A, Scarpa V, Morel M, Pylawka S, Shawber CJ, Embree MC. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis. J Dent Res 2020; 99(10): 1174–1181

[122]

Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-κB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med 2020; 24(18): 10855–10865

[123]

Wang C, Shen J, Ying J, Xiao D, O’Keefe RJ. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci USA 2020; 117(48): 30488–30497

[124]

Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M, Young PP. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 2018; 3(3): e96308

[125]

Lu J, Zhang H, Pan J, Hu Z, Liu L, Liu Y, Yu X, Bai X, Cai D, Zhang H. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23(1): 142–155

[126]

Gibertoni F, Sommer MEL, Esquisatto MAM, Amaral MECD, Oliveira CA, Andrade TAM, Mendonça FAS, Santamaria M Jr, Felonato M. Evolution of periodontal disease: immune response and RANK/RANKL/OPG system. Braz Dent J 2017; 28(6): 679–687

[127]

Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59(2): 99–107

[128]

Neumann E, Müller-Ladner U, Frommer KW. Inflammation and bone metabolism. Z Rheumatol 2014; 73(4): 342–348 (in German)

[129]

Takegahara N, Kim H, Choi Y. RANKL biology. Bone 2022; 159: 116353

[130]

Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 2019; 20(18): 4653–4681

[131]

Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, Pascual V, Hood LE, Clark EA. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 1998; 161(11): 6113–6121

[132]

Yasuda H. Correction to: Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 12–22

[133]

Frase D, Lee C, Nachiappan C, Gupta R, Akkouch A. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis. Cells 2023; 12(13): 1744–1759

[134]

Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705–724

[135]

Lee J, Lee S, Lee CY, Seo HH, Shin S, Choi JW, Kim SW, Park JC, Lim S, Hwang KC. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 2017; 8(1): 195–201

[136]

Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 2007; 282(45): 33098–33106

[137]

Dutka M, Bobiński R, Wojakowski W, Francuz T, Pająk C, Zimmer K. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases. Heart Fail Rev 2022; 27(4): 1395–1411

[138]

Kikuchi S, Wada A, Kamihara Y, Yamamoto I, Kirigaya D, Kunimoto K, Horaguchi R, Fujihira T, Nabe Y, Minemura T, Dang NH, Sato T. A novel mechanism for bone loss: platelet count negatively correlates with bone mineral density via megakaryocyte-derived RANKL. Int J Mol Sci 2023; 24(15): 12150–12158

[139]

Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15(6): 457–475

[140]

Milanova V, Ivanovska N, Dimitrova P. TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014; 2014: 643406

[141]

Hao S, Zhang J, Huang B, Feng D, Niu X, Huang W. Bone remodeling serum markers in children with systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20(1): 54–60

[142]

Hadji P, Colli E, Regidor PA. Bone health in estrogen-free contraception. Osteoporos Int 2019; 30(12): 2391–2400

[143]

Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001; 142(12): 5050–5055

[144]

Hariri H, Kose O, Bezdjian A, Daniel SJ, St-Arnaud R. USP53 regulates bone homeostasis by controlling rankl expression in osteoblasts and bone marrow adipocytes. J Bone Miner Res 2023; 38(4): 578–596

[145]

Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18): 2412–2424

[146]

Li X, Cui L, Chen W, Fang Y, Shen G, Li Z, Zhang B, Wu L. QiangGuYin modulates the OPG/RANKL/RANK pathway by increasing secretin levels during treatment of primary type I osteoporosis. Evid Based Complement Alternat Med 2021; 2021: 7114139

[147]

Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295–1349

[148]

Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29(2): 155–192

[149]

Furuya Y, Mera H, Itokazu M, Terai S, Nakamura H, Wakitani S, Yasuda H. Induction of chondrogenesis with a RANKL-binding peptide, WP9QY, in vitro and in vivo in a rabbit model. Biochem Biophys Res Commun 2022; 602: 98–104

[150]

Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK axis in immunity-implications for pathogenesis and treatment of bone metastasis. Front Immunol 2022; 13: 824117

[151]

Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 2021; 39(1): 2–11

[152]

van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL signaling in cancer of the uterine cervix: a review. Int J Mol Sci 2019; 20(9): 2183–2198

[153]

Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 2012; 23(11): 582–590

[154]

González-Suárez E, Sanz-Moreno A. RANK as a therapeutic target in cancer. FEBS J 2016; 283(11): 2018–2033

[155]

Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. Curr Pharmacol Rep 2018; 4(1): 64–90

[156]

Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J Biol Chem 1998; 273(51): 34120–34127

[157]

Ma X, Liu J, Yang L, Zhang B, Dong Y, Zhao Q. Cynomorium songaricum prevents bone resorption in ovariectomized rats through RANKL/RANK/TRAF6 mediated suppression of PI3K/AKT and NF-κB pathways. Life Sci 2018; 209: 140–148

[158]

Martin TJ, Sims NA. RANKL/OPG; critical role in bone physiology. Rev Endocr Metab Disord 2015; 16(2): 131–139

[159]

Duan Y, Su YT, Ren J, Zhou Q, Tang M, Li J, Li SX. Kidney tonifying traditional Chinese medicine: potential implications for the prevention and treatment of osteoporosis. Front Pharmacol 2023; 13: 1063899

[160]

Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712

[161]

Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15(7): 757–765

[162]

Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W, Ma J. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30(3): 1107–1117

[163]

Muratovic D, Findlay DM, Quarrington RD, Cao X, Solomon LB, Atkins GJ, Kuliwaba JS. Elevated levels of active transforming growth factor β1 in the subchondral bone relate spatially to cartilage loss and impaired bone quality in human knee osteoarthritis. Osteoarthritis Cartilage 2022; 30(6): 896–907

[164]

Mu W, Xu B, Ma H, Li J, Ji B, Zhang Z, Amat A, Cao L. Halofuginone attenuates osteoarthritis by rescuing bone remodeling in subchondral bone through oral gavage. Front Pharmacol 2018; 9: 269–279

[165]

Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2013; 19(6): 704–712

[166]

Lin C, Chen Z, Guo D, Zhou L, Lin S, Li C, Li S, Wang X, Lin B, Ding Y. Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 2022; 14(1): 253–271

[167]

Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 2014; 20(11): 1270–1278

[168]

Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 2019; 20(3): 705

[169]

Zupan J, Vrtačnik P, Cör A, Haring G, Weryha G, Visvikis-Siest S, Marc J. VEGF-A is associated with early degenerative changes in cartilage and subchondral bone. Growth Factors 2018; 36(5–6): 263–273

[170]

Upton AR, Holding CA, Dharmapatni AA, Haynes DR. The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol Int 2012; 32(2): 535–540

[171]

Kwan Tat S, Amiable N, Pelletier JP, Boileau C, Lajeunesse D, Duval N, Martel-Pelletier J. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009; 48(12): 1482–1490

[172]

Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 2002; 277(39): 36288–36295

[173]

Wilkinson DJ, Falconer AMD, Wright HL, Lin H, Yamamoto K, Cheung K, Charlton SH, Arques MDC, Janciauskiene S, Refaie R, Rankin KS, Young DA, Rowan AD. Matrix metalloproteinase-13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alpha-1 antitrypsin: implications for osteoarthritis. FEBS J 2022; 289(1): 121–139

[174]

Boileau C, Amiable N, Martel-Pelletier J, Fahmi H, Duval N, Pelletier JP. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007; 9(6): R121–R131

[175]

Xue M, Lin H, Liang HPH, McKelvey K, Zhao R, March L, Jackson C. Deficiency of protease-activated receptor (PAR) 1 and PAR2 exacerbates collagen-induced arthritis in mice via differing mechanisms. Rheumatology (Oxford) 2021; 60(6): 2990–3003

[176]

Amiable N, Tat SK, Lajeunesse D, Duval N, Pelletier JP, Martel-Pelletier J, Boileau C. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 2009; 44(6): 1143–1150

[177]

França BN, Gasparoni LM, Rovai ES, Ambrósio LMB, Mendonça NF, Hagy MH, Mendoza AH, Sipert CR, Holzhausen M. Protease-activated receptor type 2 activation downregulates osteogenesis in periodontal ligament stem cells. Braz Oral Res 2023; 37: e002

[178]

Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993; 261(5121): 600–603

[179]

Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 1994; 91(6): 2305–2309

[180]

Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 2014; 92(5): 433–439

[181]

Roversi FM, Bueno MLP, Pericole FV, Saad STO. Hematopoietic cell kinase (HCK) is a player of the crosstalk between hematopoietic cells and bone marrow niche through CXCL12/CXCR4 axis. Front Cell Dev Biol 2021; 9: 634044

[182]

D’Amato G, Phansalkar R, Naftaly JA, Fan X, Amir ZA, Rios Coronado PE, Cowley DO, Quinn KE, Sharma B, Caron KM, Vigilante A, Red-Horse K. Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4. Dev Cell 2022; 57(22): 2517–2532.e6

[183]

Gao A, Yan F, Zhou E, Wu L, Li L, Chen J, Lei Y, Ye J. Molecular characterization and expression analysis of chemokine (CXCL12) from Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020; 104: 314–323

[184]

Chen Q, Zheng C, Li Y, Bian S, Pan H, Zhao X, Lu WW. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl Mater Interfaces 2018; 10(28): 23700–23710

[185]

Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184(3): 1101–1109

[186]

Janowski M. Functional diversity of SDF-1 splicing variants. Cell Adhes Migr 2009; 3(3): 243–249

[187]

Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 axis in cancer: from mechanisms to clinical applications. Int J Biol Sci 2023; 19(11): 3341–3359

[188]

Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2020; 217: 91–115

[189]

Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 2012; 21(11): 1924–1935

[190]

Cho SY, Xu M, Roboz J, Lu M, Mascarenhas J, Hoffman R. The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res 2010; 70(8): 3402–3410

[191]

Yan Y, Xiong J, Xu F, Wang C, Zeng Z, Tang H, Lu Z, Huang Q. SDF-1α/CXCR4 pathway mediates hemodynamics-induced formation of intracranial aneurysm by modulating the phenotypic transformation of vascular smooth muscle cells. Transl Stroke Res 2022; 13(2): 276–286

[192]

Wang G, Li Y, Meng X, Yang X, Xiang Y. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res 2020; 15(1): 195–202

[193]

Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44: 51–68

[194]

McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213(2): 442–456

[195]

Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci USA 2016; 113(35): 9928–9933

[196]

Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Internal water channel formation in CXCR4 is crucial for Gi-protein coupling upon activation by CXCL12. Commun Chem 2020; 3(1): 133–145

[197]

Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 2015; 6: 429–452

[198]

Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101(52): 18117–18122

[199]

Tong WW, Zhang C, Hong T, Liu DH, Wang C, Li J, He XK, Xu WD. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep 2018; 8(1): 3241–3253

[200]

Ziegler ME, Hatch MM, Wu N, Muawad SA, Hughes CC. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19(3): 359–371

[201]

Kawaguchi N, Zhang TT, Nakanishi T. Involvement of CXCR4 in normal and abnormal development. Cells 2019; 8(2): 185–199

[202]

Chetram MA, Odero-Marah V, Hinton CV. Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res 2011; 9(1): 90–102

[203]

García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The role of the CXCL12/CXCR4/ACKR3 Axis in autoimmune diseases. Front Endocrinol (Lausanne) 2019; 10: 585–601

[204]

Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30(8): 1072–1090.e10

[205]

Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21(1): 257–280

[206]

Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40(2): 427–445

[207]

Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137

[208]

Xu Q, Sun XC, Shang XP, Jiang HS. Association of CXCL12 levels in synovial fluid with the radiographic severity of knee osteoarthritis. J Investig Med 2012; 60(6): 898–901

[209]

Wang S, Mobasheri A, Zhang Y, Wang Y, Dai T, Zhang Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29(3): 695–704

[210]

Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 2005; 36(5): 840–853

[211]

Sucur A, Jajic Z, Artukovic M, Matijasevic MI, Anic B, Flegar D, Markotic A, Kelava T, Ivcevic S, Kovacic N, Katavic V, Grcevic D. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther 2017; 19(1): 142–158

[212]

Yu X, Huang Y, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 2003; 18(8): 1404–1418

[213]

Dong Y, Liu H, Zhang X, Xu F, Qin L, Cheng P, Huang H, Guo F, Yang Q, Chen A. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int J Mol Sci 2016; 17(6): 943–955

[214]

Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46(1): 130–137

[215]

Kanbe K, Takemura T, Takeuchi K, Chen Q, Takagishi K, Inoue K. Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br 2004; 86(2): 296–300

[216]

Lin C, Liu L, Zeng C, Cui ZK, Chen Y, Lai P, Wang H, Shao Y, Zhang H, Zhang R, Zhao C, Fang H, Cai D, Bai X. Correction to: Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7(1): 26–39

[217]

Wei F, Moore DC, Wei L, Li Y, Zhang G, Wei X, Lee JK, Chen Q. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res Ther 2012; 14(4): R177–R188

[218]

Wei L, Sun X, Kanbe K, Wang Z, Sun C, Terek R, Chen Q. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheumatol 2006; 33(9): 1818–1826

[219]

Li P, Deng J, Wei X, Jayasuriya CT, Zhou J, Chen Q, Zhang J, Wei L, Wei F. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13. Mol Med Rep 2016; 14(2): 1475–1482

[220]

Li J, Chen H, Cai L, Guo D, Zhang D, Zhou X, Xie J. SDF-1α promotes chondrocyte autophagy through CXCR4/mTOR signaling axis. Int J Mol Sci 2023; 24(2): 1710–1723

[221]

Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 43–49

[222]

Pan J, Wang B, Li W, Zhou X, Scherr T, Yang Y, Price C, Wang L. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012; 51(2): 212–217

[223]

Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 2016; 4(1): 16028

[224]

Jiang A, Xu P, Sun S, Zhao Z, Tan Q, Li W, Song C, Leng H. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies. Connect Tissue Res 2021; 62(6): 709–719

[225]

Qin HJ, Xu T, Wu HT, Yao ZL, Hou YL, Xie YH, Su JW, Cheng CY, Yang KF, Zhang XR, Chai Y, Yu B, Cui Z. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone 2019; 125: 140–150

[226]

Lei J, Fu Y, Zhuang Y, Zhang K. Sema4D aggravated LPS-induced injury via activation of the MAPK signaling pathway in ATDC5 chondrocytes. BioMed Res Int 2020; 2020: 8691534

[227]

Qin H, Zhao X, Hu YJ, Wang S, Ma Y, He S, Shen K, Wan H, Cui Z, Yu B. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. BioMed Res Int 2021; 2021: 8852574

[228]

Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S, Cao X, Wan M. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5(8): e135446

[229]

Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4): 549–580

[230]

Lin X, Bell RD, Catheline SE, Takano T, McDavid A, Jonason JH, Schwarz EM, Xing L. Targeting synovial lymphatic function as a novel therapeutic intervention for age-related osteoarthritis in mice. Arthritis Rheumatol 2023; 75(6): 923–936

[231]

Wang S, Zhou C, Zheng H, Zhang Z, Mei Y, Martin JA. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1. Osteoarthritis Cartilage 2017; 25(5): 742–749

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1648KB)

4244

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/