Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)
Qiuyu Cao , Yi Ding , Yu Xu , Mian Li , Ruizhi Zheng , Zhujun Cao , Weiqing Wang , Yufang Bi , Guang Ning , Yiping Xu , Ren Zhao
Front. Med. ›› 2023, Vol. 17 ›› Issue (6) : 1068 -1079.
Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.
COVID-19 / antiviral drugs / mindeudesivir
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
US Food and Drug Administration. FDA approves first oral antiviral for treatment of COVID-19 in adults. Available at the website of FDA |
| [18] |
US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for molnupiravir. Available at the website of FDA |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at the website of NIH |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
Pharmaceuticals and Medical Devices Agency. Tokyo: Pharmaceuticals and medical devices agency; c2022. Gilead sciences. section 2.6.4 pharmacokinetics written summary of remdesivir common technical document. 2020. Available at the website of Pharmaceuticals and Medical Devices Agency |
| [49] |
|
| [50] |
National Health Commission of the People’s Republic of China. A transcript of Press Conference of The Joint Prevention and Control Mechanism of the State Council, 13 May 2022. Available at the website of NHC |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
Higher Education Press
/
| 〈 |
|
〉 |