Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)
Qiuyu Cao, Yi Ding, Yu Xu, Mian Li, Ruizhi Zheng, Zhujun Cao, Weiqing Wang, Yufang Bi, Guang Ning, Yiping Xu, Ren Zhao
Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.
COVID-19 / antiviral drugs / mindeudesivir
[1] |
COVID-19 Cumulative Infection Collaborators. Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet 2022; 399(10344): 2351–2380
CrossRef
Google scholar
|
[2] |
Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L; Geneva Centre for Emerging Viral Diseases. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109–1117
CrossRef
Google scholar
|
[3] |
Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, Deforche K, Doolabh D, du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, Hardie D, Hill V, Hsiao NY, Iranzadeh A, Ismail A, Joseph C, Joseph R, Koopile L, Kosakovsky Pond SL, Kraemer MUG, Kuate-Lere L, Laguda-Akingba O, Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahlangu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wibmer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603(7902): 679–686
CrossRef
Google scholar
|
[4] |
Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
CrossRef
Google scholar
|
[5] |
Wang L, Møhlenberg M, Wang P, Zhou H. Immune evasion of neutralizing antibodies by SARS-CoV-2 Omicron. Cytokine Growth Factor Rev 2023; 70: 13–25
CrossRef
Google scholar
|
[6] |
Zheng L, Liu S, Lu F. Impact of national Omicron outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect 2023; 12(1): 2191738
CrossRef
Google scholar
|
[7] |
Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19(11): 685–700
CrossRef
Google scholar
|
[8] |
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22(6): 449–475
CrossRef
Google scholar
|
[9] |
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC; ACTT-1 Study Group Members. Remdesivir for the treatment of Covid-19—final report. N Engl J Med 2020; 383(19): 1813–1826
CrossRef
Google scholar
|
[10] |
Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, Hidalgo A, Sachdeva Y, Mittal S, Osiyemi O, Skarbinski J, Juneja K, Hyland RH, Osinusi A, Chen S, Camus G, Abdelghany M, Davies S, Behenna-Renton N, Duff F, Marty FM, Katz MJ, Ginde AA, Brown SM, Schiffer JT, Hill JA; GS-US-540-9012 (PINETREE) Investigators. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022; 386(4): 305–315
CrossRef
Google scholar
|
[11] |
Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simón-Campos A, Pypstra R, Rusnak JM; EPIC-HR Investigators. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022; 386(15): 1397–1408
CrossRef
Google scholar
|
[12] |
Li P, Wang Y, Lavrijsen M, Lamers MM, de Vries AC, Rottier RJ, Bruno MJ, Peppelenbosch MP, Haagmans BL, Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res 2022; 32(3): 322–324
CrossRef
Google scholar
|
[13] |
Yu B, Chang J. The first Chinese oral anti-COVID-19 drug azvudine launched. Innovation (Camb) 2022; 3(6): 100321
CrossRef
Google scholar
|
[14] |
Xie Y, Yin W, Zhang Y, Shang W, Wang Z, Luan X, Tian G, Aisa HA, Xu Y, Xiao G, Li J, Jiang H, Zhang S, Zhang L, Xu HE, Shen J. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res 2021; 31(11): 1212–1214
CrossRef
Google scholar
|
[15] |
Cao Z, Gao W, Bao H, Feng H, Mei S, Chen P, Gao Y, Cui Z, Zhang Q, Meng X, Gui H, Wang W, Jiang Y, Song Z, Shi Y, Sun J, Zhang Y, Xie Q, Xu Y, Ning G, Gao Y, Zhao R. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023; 388(5): 406–417
CrossRef
Google scholar
|
[16] |
Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672–683
CrossRef
Google scholar
|
[17] |
US Food and Drug Administration. FDA approves first oral antiviral for treatment of COVID-19 in adults. Available at the website of FDA
|
[18] |
US Food and Drug Administration. Fact sheet for healthcare providers: emergency use authorization for molnupiravir. Available at the website of FDA
|
[19] |
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295(20): 6785–6797
CrossRef
Google scholar
|
[20] |
Cho A, Saunders OL, Butler T, Zhang L, Xu J, Vela JE, Feng JY, Ray AS, Kim CU. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett 2012; 22(8): 2705–2707
CrossRef
Google scholar
|
[21] |
CihlarTMackmanRL. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir Ther 2022; 27(2): 13596535221082773 doi:10.1177/13596535221082773
Pubmed
|
[22] |
Olender SA, Perez KK, Go AS, Balani B, Price-Haywood EG, Shah NS, Wang S, Walunas TL, Swaminathan S, Slim J, Chin B, De Wit S, Ali SM, Soriano Viladomiu A, Robinson P, Gottlieb RL, Tsang TYO, Lee IH, Hu H, Haubrich RH, Chokkalingam AP, Lin L, Zhong L, Bekele BN, Mera-Giler R, Phulpin C, Edgar H, Gallant J, Diaz-Cuervo H, Smith LE, Osinusi AO, Brainard DM, Bernardino JI; GS-US-540–5773, GS-US-540–5807 Investigators. Remdesivir for severe coronavirus disease 2019 (COVID-19) versus a cohort receiving standard of care. Clin Infect Dis 2021; 73(11): e4166–e4174
CrossRef
Google scholar
|
[23] |
WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022; 399(10339): 1941–1953
CrossRef
Google scholar
|
[24] |
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X, Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L, Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B, Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569–1578
CrossRef
Google scholar
|
[25] |
Saravolatz LD, Depcinski S, Sharma M. Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 2023; 76(1): 165–171
CrossRef
Google scholar
|
[26] |
Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH 3rd, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
CrossRef
Google scholar
|
[27] |
Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martín-Quirós A, Caraco Y, Williams-Diaz A, Brown ML, Du J, Pedley A, Assaid C, Strizki J, Grobler JA, Shamsuddin HH, Tipping R, Wan H, Paschke A, Butterton JR, Johnson MG, De Anda C; MOVe-OUT Study Group. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022; 386(6): 509–520
CrossRef
Google scholar
|
[28] |
National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at the website of NIH
|
[29] |
Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374(6575): 1586–1593
CrossRef
Google scholar
|
[30] |
Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther 2020; 5(1): 67
CrossRef
Google scholar
|
[31] |
Zhao Y, Fang C, Zhang Q, Zhang R, Zhao X, Duan Y, Wang H, Zhu Y, Feng L, Zhao J, Shao M, Yang X, Zhang L, Peng C, Yang K, Ma D, Rao Z, Yang H. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell 2022; 13(9): 689–693
CrossRef
Google scholar
|
[32] |
Lamontagne F, Agarwal A, Rochwerg B, Siemieniuk RA, Agoritsas T, Askie L, Lytvyn L, Leo YS, Macdonald H, Zeng L, Amin W, da Silva ARA, Aryal D, Barragan FAJ, Bausch FJ, Burhan E, Calfee CS, Cecconi M, Chacko B, Chanda D, Dat VQ, De Sutter A, Du B, Freedman S, Geduld H, Gee P, Gotte M, Harley N, Hashimi M, Hunt B, Jehan F, Kabra SK, Kanda S, Kim YJ, Kissoon N, Krishna S, Kuppalli K, Kwizera A, Lado Castro-Rial M, Lisboa T, Lodha R, Mahaka I, Manai H, Mendelson M, Migliori GB, Mino G, Nsutebu E, Preller J, Pshenichnaya N, Qadir N, Relan P, Sabzwari S, Sarin R, Shankar-Hari M, Sharland M, Shen Y, Ranganathan SS, Souza JP, Stegemann M, Swanstrom R, Ugarte S, Uyeki T, Venkatapuram S, Vuyiseka D, Wijewickrama A, Tran L, Zeraatkar D, Bartoszko JJ, Ge L, Brignardello-Petersen R, Owen A, Guyatt G, Diaz J, Kawano-Dourado L, Jacobs M, Vandvik PO. A living WHO guideline on drugs for covid-19. BMJ 2020; 370: m3379
CrossRef
Google scholar
|
[33] |
Charness ME, Gupta K, Stack G, Strymish J, Adams E, Lindy DC, Mohri H, Ho DD. Rebound of SARS-CoV-2 infection after nirmatrelvir-ritonavir treatment. N Engl J Med 2022; 387(11): 1045–1047
CrossRef
Google scholar
|
[34] |
Sun L, Peng Y, Yu W, Zhang Y, Liang L, Song C, Hou J, Qiao Y, Wang Q, Chen J, Wu M, Zhang D, Li E, Han Z, Zhao Q, Jin X, Zhang B, Huang Z, Chai J, Wang JH, Chang J. Mechanistic insight into antiretroviral potency of 2′-deoxy-2′-β-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention. J Med Chem 2020; 63(15): 8554–8566
CrossRef
Google scholar
|
[35] |
Yu B, Chang J. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Signal Transduct Target Ther 2020; 5(1): 236
CrossRef
Google scholar
|
[36] |
Wang RR, Yang QH, Luo RH, Peng YM, Dai SX, Zhang XJ, Chen H, Cui XQ, Liu YJ, Huang JF, Chang JB, Zheng YT. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS One 2014; 9(8): e105617
CrossRef
Google scholar
|
[37] |
Ren Z, Luo H, Yu Z, Song J, Liang L, Wang L, Wang H, Cui G, Liu Y, Wang J, Li Q, Zeng Z, Yang S, Pei G, Zhu Y, Song W, Yu W, Song C, Dong L, Hu C, Du J, Chang J. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Adv Sci (Weinh) 2020; 7(19): 2001435
CrossRef
Google scholar
|
[38] |
Zhu KW. Efficacy and safety evaluation of azvudine in the prospective treatment of COVID-19 based on four phase III clinical trials. Front Pharmacol 2023; 14: 1228548
CrossRef
Google scholar
|
[39] |
Sun Y, Jin L, Dian Y, Shen M, Zeng F, Chen X, Deng G. Oral azvudine for hospitalised patients with COVID-19 and pre-existing conditions: a retrospective cohort study. EClinicalMedicine 2023; 59: 101981
CrossRef
Google scholar
|
[40] |
Gao Y, Luo Z, Ren S, Duan Z, Han Y, Liu H, Gao Z, Zhang X, Hu Z, Ma Y. Antiviral effect of azvudine and nirmatrelvir-ritonavir among hospitalized patients with COVID-19. J Infect 2023; 86(6): e158–e160
CrossRef
Google scholar
|
[41] |
Dian Y, Meng Y, Sun Y, Deng G, Zeng F. Azvudine versus Paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities. J Infect 2023; 87(2): e24–e27
CrossRef
Google scholar
|
[42] |
Wang F, Xiao W, Tang Y, Cao M, Shu D, Asakawa T, Xu Y, Jiang X, Zhang L, Wang W, Tang J, Huang Y, Yang Y, Yang Y, Tang R, Shen J, Lu H. Efficacy and safety of SIM0417 (SSD8432) plus ritonavir for COVID-19 treatment: a randomised, double-blind, placebo-controlled, phase 1b trial. Lancet Reg Health West Pac 2023; 38: 100835
CrossRef
Google scholar
|
[43] |
Chen X, Li P, Huang J, Yang Y, Zhang H, Wang Z, Zhu Z, Wang J, Zhang J, Chen K, He H, Long C, Chen S. Discovery of novel bicyclic[3.3.0]proline peptidyl α-ketoamides as potent 3CL-protease inhibitors for SARS-CoV-2. Bioorg Med Chem Lett 2023; 90: 129324
CrossRef
Google scholar
|
[44] |
Zhu KW. Deuremidevir and simnotrelvir-ritonavir for the treatment of COVID-19. ACS Pharmacol Transl Sci 2023; 6(9): 1306–1309
CrossRef
Google scholar
|
[45] |
ChenXHuangXMaQ. Petr KuzmičZhouBXuJLiuBJiangHZhangWYangCWuSHuangJLiHLongCZhaoXXuHShengYGuoYNiuCXueLXuYLiuJZhangTJamesSpencerDengWChenSXiongXYangZZhongN. Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor. 2023, PREPRINT (Version 1) Available at Research Square. doi: 10.21203/rs.3.rs-2634509/v1
|
[46] |
Wei D, Hu T, Zhang Y, Zheng W, Xue H, Shen J, Xie Y, Aisa HA. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem 2021; 46: 116364
CrossRef
Google scholar
|
[47] |
Zhang R, Zhang Y, Zheng W, Shang W, Wu Y, Li N, Xiong J, Jiang H, Shen J, Xiao G, Xie Y, Zhang L. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7(1): 123
CrossRef
Google scholar
|
[48] |
Pharmaceuticals and Medical Devices Agency. Tokyo: Pharmaceuticals and medical devices agency; c2022. Gilead sciences. section 2.6.4 pharmacokinetics written summary of remdesivir common technical document. 2020. Available at the website of Pharmaceuticals and Medical Devices Agency
|
[49] |
Qian HJ, Wang Y, Zhang MQ, Xie YC, Wu QQ, Liang LY, Cao Y, Duan HQ, Tian GH, Ma J, Zhang ZB, Li N, Jia JY, Zhang J, Aisa HA, Shen JS, Yu C, Jiang HL, Zhang WH, Wang Z, Liu GY. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022; 43(12): 3130–3138
CrossRef
Google scholar
|
[50] |
National Health Commission of the People’s Republic of China. A transcript of Press Conference of The Joint Prevention and Control Mechanism of the State Council, 13 May 2022. Available at the website of NHC
|
[51] |
Shen Y, Ai J, Lin N, Zhang H, Li Y, Wang H, Wang S, Wang Z, Li T, Sun F, Fan Z, Li L, Lu Y, Meng X, Xiao H, Hu H, Ling Y, Li F, Li H, Xi C, Gu L, Zhang W, Fan X. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 Omicron variants. Emerg Microbes Infect 2022; 11(1): 1518–1523
CrossRef
Google scholar
|
[52] |
Extance A. Covid-19: what is the evidence for the antiviral molnupiravir?. BMJ 2022; 377: o926
CrossRef
Google scholar
|
[53] |
WangLBergerNADavisPBKaelberDCVolkowNDXuR. COVID-19 rebound after Paxlovid and Molnupiravir during January–June 2022. medRxiv 2022; doi: 10.1101/2022.06.21.22276724
|
[54] |
Aggarwal NR, Molina KC, Beaty LE, Bennett TD, Carlson NE, Mayer DA, Peers JL, Russell S, Wynia MK, Ginde AA. Real-world use of nirmatrelvir-ritonavir in outpatients with COVID-19 during the era of omicron variants including BA.4 and BA.5 in Colorado, USA: a retrospective cohort study. Lancet Infect Dis 2023; 23(6): 696–705
CrossRef
Google scholar
|
[55] |
Ledford H. Long-COVID treatments: why the world is still waiting. Nature 2022; 608(7922): 258–260
CrossRef
Google scholar
|
[56] |
Ayoubkhani D, Bermingham C, Pouwels KB, Glickman M, Nafilyan V, Zaccardi F, Khunti K, Alwan NA, Walker AS. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022; 377: e069676
CrossRef
Google scholar
|
[57] |
McCarthy MW. VV116 as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24(6): 675–678
CrossRef
Google scholar
|
[58] |
Zhao J, Zhang G, Zhang Y, Yi D, Li Q, Ma L, Guo S, Li X, Guo F, Lin R, Luu G, Liu Z, Wang Y, Cen S. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021; 196: 105209
CrossRef
Google scholar
|
[59] |
Brown AJ, Won JJ, Graham RL, Dinnon KH 3rd, Sims AC, Feng JY, Cihlar T, Denison MR, Baric RS, Sheahan TP. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541
CrossRef
Google scholar
|
[60] |
Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH 3rd, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883
CrossRef
Google scholar
|
/
〈 | 〉 |