Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis

Weiwei Xian , Mohammad Asad , Shuai Wu , Zhixin Bai , Fengjiao Li , Junfeng Lu , Gaoyu Zu , Erin Brintnell , Hong Chen , Ying Mao , Guomin Zhou , Bo Liao , Jinsong Wu , Edwin Wang , Linya You

Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 147 -168.

PDF (10179KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (1) : 147 -168. DOI: 10.1007/s11684-023-1017-7
RESEARCH ARTICLE

Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis

Author information +
History +
PDF (10179KB)

Abstract

The association of neurogenesis and gliogenesis with glioma remains unclear. By conducting single-cell RNA-seq analyses on 26 gliomas, we reported their classification into primitive oligodendrocyte precursor cell (pri-OPC)-like and radial glia (RG)-like tumors and validated it in a public cohort and TCGA glioma. The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations, and the pri-OPC-like ones were prone to carrying TP53 mutations. Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes, suggesting their distinct immune evasion programs. Furthermore, the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners. Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes. For example, glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes, respectively. Their expression was positively correlated with those of immune checkpoint genes (e.g., LGALS3) and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells. This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.

Keywords

single-cell RNA-seq / glioma / radial glia / primitive oligodendrocyte precursor cell / immune escape

Cite this article

Download citation ▾
Weiwei Xian, Mohammad Asad, Shuai Wu, Zhixin Bai, Fengjiao Li, Junfeng Lu, Gaoyu Zu, Erin Brintnell, Hong Chen, Ying Mao, Guomin Zhou, Bo Liao, Jinsong Wu, Edwin Wang, Linya You. Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis. Front. Med., 2024, 18(1): 147-168 DOI:10.1007/s11684-023-1017-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncol 2021; 23(8): 1231–1251

[2]

Cancer Genome Atlas Research Network. . Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372(26): 2481–2498

[3]

LaMonica BE, Lui JH, Hansen DV, Kriegstein AR. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun 2013; 4(1): 1665

[4]

Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011; 146(1): 18–36

[5]

Gertz CC, Kriegstein AR. Neuronal migration dynamics in the developing ferret cortex. J Neurosci 2015; 35(42): 14307–14315

[6]

Huang W, Bhaduri A, Velmeshev D, Wang S, Wang L, Rottkamp CA, Alvarez-Buylla A, Rowitch DH, Kriegstein AR. Origins and proliferative states of human oligodendrocyte precursor cells. Cell 2020; 182(3): 594–608.e11

[7]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674

[8]

Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 2015; 7(5): a020610

[9]

Weng Q, Wang J, Wang J, He D, Cheng Z, Zhang F, Verma R, Xu L, Dong X, Liao Y, He X, Potter A, Zhang L, Zhao C, Xin M, Zhou Q, Aronow BJ, Blackshear PJ, Rich JN, He Q, Zhou W, Suvà ML, Waclaw RR, Potter SS, Yu G, Lu QR. Single-cell transcriptomics uncovers glial progenitor diversity and cell fate determinants during development and gliomagenesis. Cell Stem Cell 2019; 24(5): 707–723.e8

[10]

Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 2015; 7(5): a020610

[11]

Matarredona ER, Zarco N, Castro C, Guerrero-Cazares H. Editorial: neural stem cells of the subventricular zone: from neurogenesis to glioblastoma origin. Front Oncol 2021; 11: 750116

[12]

Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, Lee C, Wang YCD, Wee Yong V, Guiot MC, Najafabadi H, Misic B, Antel J, Bourque G, Ragoussis J, Petrecca K. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun 2020; 11(1): 3406

[13]

Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw MKL, Hebert CM, Dewitt J, Gritsch S, Perez EM, Gonzalez Castro LN, Lan X, Druck N, Rodman C, Dionne D, Kaplan A, Bertalan MS, Small J, Pelton K, Becker S, Bonal D, Nguyen QD, Servis RL, Fung JM, Mylvaganam R, Mayr L, Gojo J, Haberler C, Geyeregger R, Czech T, Slavc I, Nahed BV, Curry WT, Carter BS, Wakimoto H, Brastianos PK, Batchelor TT, Stemmer-Rachamimov A, Martinez-Lage M, Frosch MP, Stamenkovic I, Riggi N, Rheinbay E, Monje M, Rozenblatt-Rosen O, Cahill DP, Patel AP, Hunter T, Verma IM, Ligon KL, Louis DN, Regev A, Bernstein BE, Tirosh I, Suvà ML. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 2019; 178(4): 835–849.e21

[14]

Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MSB, Li G, Duncan JA III, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MGH, Barres BA. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016; 89(1): 37–53

[15]

Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015; 372(26): 2499–2508

[16]

Kim GW, Li L, Gorbani M, You L, Yang XJ. Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 2013; 288(28): 20334–20350

[17]

Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 2020; 9(12): giaa151

[18]

McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019; 8(4): 329–337.e4

[19]

Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 2019; 37(7): 773–782

[20]

Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet 2013; 29(10): 569–574

[21]

Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods 2018; 15(5): 359–362

[22]

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV. RNA velocity of single cells. Nature 2018; 560(7719): 494–498

[23]

Malatesta P, Appolloni I, Calzolari F. Radial glia and neural stem cells. Cell Tissue Res 2008; 331(1): 165–178

[24]

Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, Ramaswamy V, Hendrikse LD, Kumar S, Mack SC, Lee JJY, Fong V, Juraschka K, Przelicki D, Michealraj A, Skowron P, Luu B, Suzuki H, Morrissy AS, Cavalli FMG, Garzia L, Daniels C, Wu X, Qazi MA, Singh SK, Chan JA, Marra MA, Malkin D, Dirks P, Heisler L, Pugh T, Ng K, Notta F, Thompson EM, Kleinman CL, Joyner AL, Jabado N, Stein L, Taylor MD. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 2019; 572(7767): 67–73

[25]

Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, Mahfouz A. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol 2019; 20(1): 194

[26]

Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw MKL, Rodman C, Gillespie SM, Dionne D, Luo CC, Ravichandran H, Mylvaganam R, Mount C, Onozato ML, Nahed BV, Wakimoto H, Curry WT, Iafrate AJ, Rivera MN, Frosch MP, Golub TR, Brastianos PK, Getz G, Patel AP, Monje M, Cahill DP, Rozenblatt-Rosen O, Louis DN, Bernstein BE, Regev A, Suvà ML. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017; 355(6332): eaai8478

[27]

Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet 2009; 18(R1): R1–R8

[28]

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90–W97

[29]

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14(1): 128

[30]

Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904–5912

[31]

Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 2018; 18(3): 139–147

[32]

Fusella F, Seclì L, Busso E, Krepelova A, Moiso E, Rocca S, Conti L, Annaratone L, Rubinetto C, Mello-Grand M, Singh V, Chiorino G, Silengo L, Altruda F, Turco E, Morotti A, Oliviero S, Castellano I, Cavallo F, Provero P, Tarone G, Brancaccio M. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8(1): 1636

[33]

Kitayama J, Nagawa H, Yasuhara H, Tsuno N, Kimura W, Shibata Y, Muto T. Suppressive effect of basic fibroblast growth factor on transendothelial emigration of CD4+ T-lymphocyte. Cancer Res 1994; 54(17): 4729–4733

[34]

Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata-Kajihara T, Nishio H, Kawamura N, Kawakami Y. The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol 2011; 93(3): 294–300

[35]

Spranger S, Gajewski TF. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer 2015; 3(1): 43

[36]

Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 2019; 25(10): 3074–3083

[37]

Swafford D, Manicassamy S. Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. Discov Med 2015; 19(105): 303–310

[38]

Kaler P, Augenlicht L, Klampfer L. Activating mutations in β-catenin in colon cancer cells alter their interaction with macrophages; the role of snail. PLoS One 2012; 7(9): e45462

[39]

Guo G, Yu M, Xiao W, Celis E, Cui Y. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity. Cancer Res 2017; 77(9): 2292–2305

[40]

Sabapathy K, Nam SY. Defective MHC class I antigen surface expression promotes cellular survival through elevated ER stress and modulation of p53 function. Cell Death Differ 2008; 15(9): 1364–1374

[41]

Ghosh M, Saha S, Bettke J, Nagar R, Parrales A, Iwakuma T. Mutant p53 aids cancer cells in evading lethal innate immune responses. Cancer Discov 2021; 11(5): OF14

[42]

Garancher A, Suzuki H, Haricharan S, Chau LQ, Masihi MB, Rusert JM, Norris PS, Carrette F, Romero MM, Morrissy SA, Skowron P, Cavalli FMG, Farooq H, Ramaswamy V, Jones SJM, Moore RA, Mungall AJ, Ma Y, Thiessen N, Li Y, Morcavallo A, Qi L, Kogiso M, Du Y, Baxter P, Henderson JJ, Crawford JR, Levy ML, Olson JM, Cho YJ, Deshpande AJ, Li XN, Chesler L, Marra MA, Wajant H, Becher OJ, Bradley LM, Ware CF, Taylor MD, Wechsler-Reya RJ. Tumor necrosis factor overcomes immune evasion in p53-mutant medulloblastoma. Nat Neurosci 2020; 23(7): 842–853

[43]

Song WM, Zhang B. Multiscale embedded gene co-expression network analysis. PLOS Comput Biol 2015; 11(11): e1004574

[44]

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JEC, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997–1003

[45]

Cohen AL, Colman H. Glioma biology and molecular markers. Cancer Treat Res 2015; 163: 15–30

[46]

Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. Elife 2020; 9: e52176

[47]

Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, Kandpal M, O’Rourke DM, Greenfield JP, Greene CS, Davuluri RV, Dahmane N. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun 2019; 7: 203

[48]

Nieto P, Elosua-Bayes M, Trincado JL, Marchese D, Massoni-Badosa R, Salvany M, Henriques A, Nieto J, Aguilar-Fernández S, Mereu E, Moutinho C, Ruiz S, Lorden P, Chin VT, Kaczorowski D, Chan CL, Gallagher R, Chou A, Planas-Rigol E, Rubio-Perez C, Gut I, Piulats JM, Seoane J, Powell JE, Batlle E, Heyn H. A single-cell tumor immune atlas for precision oncology. Genome Res 2021; 31(10): 1913–1926

[49]

Dai J, Bercury KK, Ahrendsen JT, Macklin WB. Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J Neurosci 2015; 35(10): 4386–4402

[50]

Burton A. Olig1 needed for remyelination. Lancet Neurol 2005; 4(2): 80

[51]

Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, Curry WT, Martuza RL, Rivera MN, Rossetti N, Kasif S, Beik S, Kadri S, Tirosh I, Wortman I, Shalek AK, Rozenblatt-Rosen O, Regev A, Louis DN, Bernstein BE. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014; 157(3): 580–594

[52]

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401

[53]

Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom?. Immunology 2000; 101(2): 169–177

[54]

Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 shapes antitumor immune responses by suppressing CD8 T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 2015; 3(4): 412–423

[55]

Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020; 20(3): 173–185

[56]

Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003; 198(4): 557–567

[57]

Hu WM, Yang YZ, Zhang TZ, Qin CF, Li XN. LGALS3 is a poor prognostic factor in diffusely infiltrating gliomas and is closely correlated with CD163+ tumor-associated macrophages. Front Med (Lausanne) 2020; 7: 182

[58]

Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 2012; 119(3): 696–706

[59]

Chiang EY, Almeida PE, Almeida Nagata DE, Bowles KH, Du X, Chitre AS, Banta KL, Kwon Y, McKenzie B, Mittman S, Cubas R, Anderson KR, Warming S, Grogan JL. CD96 functions as a co-stimulatory receptor to enhance CD8+ T cell activation and effector responses. Eur J Immunol 2020; 50(6): 891–902

[60]

Pfistershammer K, Majdic O, Stöckl J, Zlabinger G, Kirchberger S, Steinberger P, Knapp W. CD63 as an activation-linked T cell costimulatory element. J Immunol 2004; 173(10): 6000–6008

[61]

Yoon SS, Kim HJ, Chung DH, Kim TJ. CD99 costimulation up-regulates T cell receptor-mediated activation of JNK and AP-1. Mol Cells 2004; 18(2): 186–191

[62]

Zhu C, Mustafa D, Zheng P, van der Weiden M, Sacchetti A, Brandt M, Chrifi I, Tempel D, Leenen PJM, Duncker DJ, Cheng C, Kros JM. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro-oncol 2017; 19(5): 648–659

[63]

Berghoff AS, Kiesel B, Widhalm G, Wilhelm D, Rajky O, Kurscheid S, Kresl P, Wöhrer A, Marosi C, Hegi ME, Preusser M. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-oncol 2017; 19(11): 1460–1468

[64]

Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 2008; 27(45): 5869–5885

[65]

McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, Swanton C; TRACERx Consortium. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017; 171(6): 1259–1271.e11

[66]

Silginer M, Nagy S, Happold C, Schneider H, Weller M, Roth P. Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro-oncol 2017; 19(10): 1338–1349

[67]

Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F, Yamamoto T, Tanahashi K, Ranjit M, Wakabayashi T, Yoshizato T, Kataoka K, Yoshida K, Nagata Y, Sato-Otsubo A, Tanaka H, Sanada M, Kondo Y, Nakamura H, Mizoguchi M, Abe T, Muragaki Y, Watanabe R, Ito I, Miyano S, Natsume A, Ogawa S. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015; 47(5): 458–468

[68]

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155(2): 462–477

[69]

Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol 2017; 134(3): 505–512

[70]

Zhang C, Moore LM, Li X, Yung WKA, Zhang W. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro-oncol 2013; 15(9): 1114–1126

[71]

Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA. A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2019; 177(6): 1583–1599.e16

[72]

Japp AS, Meng W, Rosenfeld AM, Perry DJ, Thirawatananond P, Bacher RL, Liu C, Gardner JS, Atkinson MA, Kaestner KH, Brusko TM, Naji A, Luning Prak ET, Betts MR. TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell 2021; 184(3): 827–839.e14

[73]

Liu Y, Shepherd EG, Nelin LD. MAPK phosphatases—regulating the immune response. Nat Rev Immunol 2007; 7(3): 202–212

RIGHTS & PERMISSIONS

The Author(s) 2023. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (10179KB)

Supplementary files

FMD-23036-OF-WJS_suppl_1

4252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/