Discovery and repurposing of artemisinin

Qiaoli Shi , Fei Xia , Qixin Wang , Fulong Liao , Qiuyan Guo , Chengchao Xu , Jigang Wang

Front. Med. ›› 2022, Vol. 16 ›› Issue (1) : 1 -9.

PDF (1583KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (1) : 1 -9. DOI: 10.1007/s11684-021-0898-6
REVIEW
REVIEW

Discovery and repurposing of artemisinin

Author information +
History +
PDF (1583KB)

Abstract

Malaria is an ancient infectious disease that threatens millions of lives globally even today. The discovery of artemisinin, inspired by traditional Chinese medicine (TCM), has brought in a paradigm shift and been recognized as the “best hope for the treatment of malaria” by World Health Organization. With its high potency and low toxicity, the wide use of artemisinin effectively treats the otherwise drug-resistant parasites and helps many countries, including China, to eventually eradicate malaria. Here, we will first review the initial discovery of artemisinin, an extraordinary journey that was in stark contrast with many drugs in western medicine. We will then discuss how artemisinin and its derivatives could be repurposed to treat cancer, inflammation, immunoregulation-related diseases, and COVID-19. Finally, we will discuss the implications of the “artemisinin story” and how that can better guide the development of TCM today. We believe that artemisinin is just a starting point and TCM will play an even bigger role in healthcare in the 21st century.

Keywords

artemisinin / drug repurposing / cancer / inflammation / COVID-19 / traditional Chinese medicine

Cite this article

Download citation ▾
Qiaoli Shi, Fei Xia, Qixin Wang, Fulong Liao, Qiuyan Guo, Chengchao Xu, Jigang Wang. Discovery and repurposing of artemisinin. Front. Med., 2022, 16(1): 1-9 DOI:10.1007/s11684-021-0898-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TuYY. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel Lecture). Angew Chem Int Ed Eng, 2016, l55( 35): 10210– 10226

[2]

World Health Organization. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization, 2020

[3]

YoshidaGJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol, 2017, 10( 1): 67

[4]

EfferthT. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol, 2017, 46 : 65– 83

[5]

HoWE, Peh HY, ChanTK, WongWS. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther, 2014, 142( 1): 126– 139

[6]

LiG, Yuan M, LiH, DengC, WangQ, TangY, ZhangH, YuW, Xu Q, ZouY, YuanY, GuoJ, Jin C, GuanX, XieF, Song J. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. Int J Antimicrob Agents, 2021, 57( 1): 106216

[7]

GendrotM, DuflotI, BoxbergerM, DelandreO, JardotP, Le BideauM, AndreaniJ, FontaI, MosnierJ, RollandC, HutterS, La ScolaB, PradinesB. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J Infect Dis, 2020, 99 : 437– 440

[8]

KrishnaS, AugustinY, WangJ, XuC, Staines HM, PlatteeuwH, KamarulzamanA, SallA, KremsnerP. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol, 2021, 37( 1): 8– 11

[9]

YangJ, HeY, Li Y, ZhangX, WongYK, ShenS, ZhongT, ZhangJ, LiuQ, Wang J. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther, 2020, 216 : 107697

[10]

WangJ, XuC, Liao FL, JiangT, KrishnaS, TuY. Suboptimal dosing triggers artemisinin partner drug resistance. Lancet Infect Dis, 2019, 19( 11): 1167– 1168

[11]

WangJ, XuC, Liao FL, JiangT, KrishnaS, TuY. A temporizing solution to “artemisinin resistance”. N Engl J Med, 2019, 380( 22): 2087– 2089

[12]

Strategic Advisory Group on Malaria Eradication. Malaria eradication: benefits, future scenarios and feasibility. A report of the Strategic Advisory Group on Malaria Eradication. Geneva: World Health Organization, 2020

[13]

MaN, Zhang Z, LiaoF, JiangT, TuY. The birth of artemisinin. Pharmacol Ther, 2020, 216 : 107658

[14]

TuY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med, 2011, 17( 10): 1217– 1220

[15]

World Health Organization. Guidelines for the treatment of malaria. 1st ed. Geneva: World Health Organization, 2006

[16]

EfferthT, KainaB. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol, 2010, 40( 5): 405– 421

[17]

The Nobel Prize. The Nobel Prize in Physiology or Medicine. 2015.

[18]

World Health Organization. World Health Organization Model List of Essential Medicines. 21st List. Geneva: World Health Organization, 2019

[19]

EastmanRT, FidockDA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol, 2009, 7( 12): 864– 874

[20]

SunX, Yan P, ZouC, WongYK, ShuY, Lee YM, ZhangC, YangND, WangJ, ZhangJ. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev, 2019, 39( 6): 2172– 2193

[21]

WoerdenbagHJ, MoskalTA, PrasN, MalingréTM, el-FeralyFS, KampingaHH, KoningsAW. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod, 1993, 56( 6): 849– 856

[22]

LaiHC, SinghNP, SasakiT. Development of artemisinin compounds for cancer treatment. Invest New Drugs, 2013, 31( 1): 230– 246

[23]

KingD, YeomansonD, BryantHE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol, 2015, 37( 4): 245– 251

[24]

WangJ, ZhangJ, ShiY, Xu C, ZhangC, WongYK, LeeYM, KrishnaS, HeY, Lim TK, SimW, HuaZC, ShenHM, LinQ. Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticolorectal cancer activity. ACS Cent Sci, 2017, 3( 7): 743– 750

[25]

YangND, TanSH, NgS, Shi Y, ZhouJ, TanKSW, WongWSF, ShenHM. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem, 2014, 289( 48): 33425– 33441

[26]

FengFB, QiuHY. Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother, 2018, 102 : 1209– 1220

[27]

WangYS, YuP, Wang Y, ZhangJ, HangW, YinZX, LiuG, Chen J, WerleKD, QuanCS, GaoH, Zeng Q, CuiR, LiangJ, DingQ, LiYL, Xu ZX. AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex. Int J Cardiol, 2018, 259 : 153– 162

[28]

CarlingD. AMPK signalling in health and disease. Curr Opin Cell Biol, 2017, 45 : 31– 37

[29]

ChoiYK, ParkKG. Metabolic roles of AMPK and metformin in cancer cells. Mol Cells, 2013, 36( 4): 279– 287

[30]

DuJ, Wang T, LiY, ZhouY, WangX, YuX, Ren X, AnY, WuY, Sun W, FanW, ZhuQ, Wang Y, TongX. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med, 2019, 131 : 356– 369

[31]

ZhouX, ChenY, WangF, WuH, Zhang Y, LiuJ, CaiY, Huang S, HeN, HuZ, Jin X. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem Biol Interact, 2020, 331 : 109273

[32]

ChengC, WangT, SongZ, PengL, GaoM, Hermine O, RousseauxS, KhochbinS, MiJQ, Wang J. Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044. Cancer Med, 2018, 7( 2): 380– 396

[33]

OrlovaA, WagnerC, deAraujo ED, BajuszD, NeubauerHA, HerlingM, GunningPT, KeserűGM, MorigglR. Direct targeting options for STAT3 and STAT5 in cancer. Cancers (Basel), 2019, 11( 12): 1930

[34]

YanX, Li P, ZhanY, QiM, Liu J, AnZ, YangW, XiaoH, WuH, Qi Y, ShaoH. Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and survivin expression to potentiate ABT-263-induced apoptosis in non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem Pharmacol, 2018, 150 : 72– 85

[35]

WangW, SunY, Li X, ShiX, LiZ, Lu X. Dihydroartemisinin prevents distant metastasis of laryngeal carcinoma by inactivating STAT3 in cancer stem cells. Med Sci Monit, 2020, 26 : e922348

[36]

IlamathiM, PrabuPC, AyyappaKA, SivaramakrishnanV. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling. Biomed Pharmacother, 2016, 82 : 72– 79

[37]

BerközM, Özkan-YılmazF, Özlüer-HuntA, KrośniakM, TürkmenÖ, KorkmazD, KeskinS. Artesunate inhibits melanoma progression in vitro via suppressing STAT3 signaling pathway. Pharmacol Rep, 2021, 73( 2): 650– 663

[38]

ZhengL, WangC, LuoT, Lu B, MaH, ZhouZ, ZhuD, Chi G, GeP, LuoY. JNK activation contributes to oxidative stress-induced parthanatos in glioma cells via increase of intracellular ROS production. Mol Neurobiol, 2017, 54( 5): 3492– 3505

[39]

WestonCR, DavisRJ. The JNK signal transduction pathway. Curr Opin Cell Biol, 2007, 19( 2): 142– 149

[40]

OgataM, HinoS, SaitoA, MorikawaK, KondoS, KanemotoS, MurakamiT, TaniguchiM, TaniiI, YoshinagaK, ShiosakaS, HammarbackJA, UranoF, ImaizumiK. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol, 2006, 26( 24): 9220– 9231

[41]

WeiY, Sinha S, LevineB. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy, 2008, 4( 7): 949– 951

[42]

YaoGD, GeMY, Li DQ, ChenL, HayashiT, TashiroSI, OnoderaS, GuoC, Song SJ, IkejimaT. L-A03, a dihydroartemisinin derivative, promotes apoptotic cell death of human breast cancer MCF-7 cells by targeting c-Jun N-terminal kinase. Biomed Pharmacother, 2018, 105 : 320– 325

[43]

OrlowskiRZ, BaldwinAS Jr. NF-κB as a therapeutic target in cancer. Trends Mol Med, 2002, 8( 8): 385– 389

[44]

BaldwinAS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest, 2001, 107( 3): 241– 246

[45]

ChenX, WongYK, LimTK, LimWH, LinQS, WangJG, HuaZC. Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway. Molecules, 2017, 22( 8): 1272

[46]

HuW, Chen SS, ZhangJL, LouXE, ZhouHJ. Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett, 2014, 343( 2): 239– 248

[47]

LiB, Bu S, SunJ, GuoY, Lai D. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim Biophys Sin (Shanghai), 2018, 50( 12): 1227– 1235

[48]

LinY, Jiang M, ChenW, ZhaoT, WeiY. Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother, 2019, 118 : 109249

[49]

XiaoR, DingC, ZhuH, Liu X, GaoJ, LiuQ, Lu D, ZhangN, ZhangA, ZhouH. Suppression of asparagine synthetase enhances the antitumor potency of ART and artemalogue SOMCL-14-221 in non-small cell lung cancer. Cancer Lett, 2020, 475 : 22– 33

[50]

VåtsveenTK, MyhreMR, SteenCB, WälchliS, LingjærdeOC, BaiB, Dillard P, TheodossiouTA, HolienT, SundanA, InderbergEM, SmelandEB, MyklebustJH, OksvoldMP. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol, 2018, 11( 1): 23

[51]

DaiX, Zhang X, ChenW, ChenY, ZhangQ, MoS, Lu J. Dihydroartemisinin: a potential natural anticancer drug. Int J Biol Sci, 2021, 17( 2): 603– 622

[52]

ShiC, Li H, YangY, HouL. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediators Inflamm, 2015, 2015 : 435713

[53]

ZhouWL, WuJM, Wu QL, WangJX, ZhouY, ZhouR, HePL, Li XY, YangYF, ZhangY, LiY, Zuo JP. A novel artemisinin derivative, 3-(12-β-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo. Acta Pharmacol Sin, 2005, 26( 11): 1352– 1358

[54]

YangZS, WangJX, ZhouY, ZuoJP, LiY. Synthesis and immunosuppressive activity of new artemisinin derivatives. Part 2: 2-[12(β or α)-dihydroartemisinoxymethyl(or 1′-ethyl)]phenoxyl propionic acids and esters. Bioorg Med Chem, 2006, 14( 23): 8043– 8049

[55]

Zhang JX, Wang JX, Zhang Y, Zuo JP, Wu JM, Sui Y, Li Y. Synthesis and immunosuppressive activity of new artemisinin derivatives containing polyethylene glycol group. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 2006; 41(1): 65–70 (in Chinese)

[56]

HouLF, HeSJ, Wang JX, YangY, ZhuFH, ZhouY, HePL, Zhang Y, YangYF, LiY, Tang W, ZuoJP. SM934, a water-soluble derivative of arteminisin, exerts immunosuppressive functions in vitro and in vivo. Int Immunopharmacol, 2009, 9( 13–14): 1509– 1517

[57]

HouL, Block KE, HuangH. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis. PLoS One, 2014, 9( 8): e104762

[58]

HeY, Fan J, LinH, YangX, YeY, Liang L, ZhanZ, DongX, SunL, Xu H. The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int, 2011, 31( 1): 53– 60

[59]

HouLF, HeSJ, Li X, YangY, HePL, Zhou Y, ZhuFH, YangYF, LiY, Tang W, ZuoJP. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum, 2011, 63( 8): 2445– 2455

[60]

LiWD, Dong YJ, TuYY, LinZB. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappa B translocation. Int Immunopharmacol, 2006, 6( 8): 1243– 1250

[61]

TangY, LiuJ, Zhang D, XuZ, JiJ, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol, 2020, 11 : 1708

[62]

GendrotM, DuflotI, BoxbergerM, DelandreO, JardotP, Le BideauM, AndreaniJ, FontaI, MosnierJ, RollandC, HutterS, La ScolaB, PradinesB. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J Infect Dis, 2020, 99 : 437– 440

[63]

LiG, Yuan M, LiH, DengC, WangQ, TangY, ZhangH, YuW, Xu Q, ZouY, YuanY, GuoJ, Jin C, GuanX, XieF, Song J. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. Int J Antimicrob Agents, 2021, 57( 1): 106216

[64]

KrishnaS, AugustinY, WangJ, XuC, Staines HM, PlatteeuwH, KamarulzamanA, SallA, KremsnerP. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol, 2021, 37( 1): 8– 11

[65]

ChenK, HuaH, Zhu Z, WuT, JiaZ, Liu Q. Artemisinin and dihydroartemisinin promote β-cell apoptosis induced by palmitate via enhancing ER stress. Apoptosis, 2020, 25( 3–4): 192– 204

[66]

Xue X, Dong Z, Deng Y, Yin S, Wang P, Liao Y, Hu G, Chen Y. Dihydroartemisinin alleviates atopic dermatitis in mice by inhibiting mast cell infiltration. J South Med Univ (Nan Fang Yi Ke Da Xue Xue Bao) 2020; 40(10): 1480–1487 (in Chinese)

[67]

NongX, RajbanshiG, ChenL, LiJ, Li Z, LiuT, ChenS, WeiG, Li J. Effect of artesunate and relation with TGF-β1 and SMAD3 signaling on experimental hypertrophic scar model in rabbit ear. Arch Dermatol Res, 2019, 311( 10): 761– 772

[68]

YangFM, FanD, Yang XQ, ZhuFH, ShaoMJ, LiQ, Liu YT, LinZM, CaoSQ, TangW, HeSJ, Zuo JP. The artemisinin analog SM934 alleviates dry eye disease in rodent models by regulating TLR4/NF-κB/NLRP3 signaling. Acta Pharmacol Sin, 2021, 42( 4): 593– 603

[69]

LiuJ, Manheimer E, ShiY, GluudC. Chinese herbal medicine for severe acute respiratory syndrome: a systematic review and meta-analysis. J Altern Complement Med, 2004, 10( 6): 1041– 1051

[70]

World Health Organization. SARS: clinical trials on treatment using a combination of traditional Chinese medicine and Western medicine. Geneva: World Health Organization, 2004

[71]

National Administration of Traditional Chinese Medicine . The Traditional Chinese Medicine Prevention Program of Influenza A (H1N1) (2009). National Administration of Traditional Chinese Medicine, 2009 (in Chinese)

[72]

LuoH, Tang QL, ShangYX, LiangSB, YangM, RobinsonN, LiuJP. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs.. Chin J Integr Med, 2020, 26( 4): 243– 250

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1583KB)

4128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/