Current applications of artificial intelligence for intraoperative decision support in surgery

Allison J. Navarrete-Welton , Daniel A. Hashimoto

Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 369 -381.

PDF (241KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 369 -381. DOI: 10.1007/s11684-020-0784-7
REVIEW
REVIEW

Current applications of artificial intelligence for intraoperative decision support in surgery

Author information +
History +
PDF (241KB)

Abstract

Research into medical artificial intelligence (AI) has made significant advances in recent years, including surgical applications. This scoping review investigated AI-based decision support systems targeted at the intraoperative phase of surgery and found a wide range of technological approaches applied across several surgical specialties. Within the twenty-one (n=21) included papers, three main categories of motivations were identified for developing such technologies: (1) augmenting the information available to surgeons, (2) accelerating intraoperative pathology, and (3) recommending surgical steps. While many of the proposals hold promise for improving patient outcomes, important methodological shortcomings were observed in most of the reviewed papers that made it difficult to assess the clinical significance of the reported performance statistics. Despite limitations, the current state of this field suggests that a number of opportunities exist for future researchers and clinicians to work on AI for surgical decision support with exciting implications for improving surgical care.

Keywords

artificial intelligence / decision support / clinical decision support systems / intraoperative / deep learning / computer vision / machine learning / surgery

Cite this article

Download citation ▾
Allison J. Navarrete-Welton, Daniel A. Hashimoto. Current applications of artificial intelligence for intraoperative decision support in surgery. Front. Med., 2020, 14(4): 369-381 DOI:10.1007/s11684-020-0784-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Spencer F. Teaching and measuring surgical techniques: the technical evaluation of competence. Bull Am Coll Surg 1978; 63: 9–12

[2]

Suliburk JW, Buck QM, Pirko CJ, Massarweh NN, Barshes NR, Singh H, Rosengart TK. Analysis of human performance deficiencies associated with surgical adverse events. JAMA Netw Open 2019; 2(7): e198067

[3]

Pugh CM, Santacaterina S, DaRosa DA, Clark RE. Intra-operative decision making: more than meets the eye. J Biomed Inform 2011; 44(3): 486–496

[4]

Hashimoto DA, Axelsson CG, Jones CB, Phitayakorn R, Petrusa E, McKinley SK, Gee D, Pugh C. Surgical procedural map scoring for decision-making in laparoscopic cholecystectomy. Am J Surg 2019; 217(2): 356–361

[5]

Pugh CM, DaRosa DA. Use of cognitive task analysis to guide the development of performance-based assessments for intraoperative decision making. Mil Med 2013; 178(10 Suppl): 22–27

[6]

Flin R, Youngson G, Yule S. How do surgeons make intraoperative decisions? Qual Saf Health Care 2007; 16(3): 235–239

[7]

Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, Lillemoe KD, Rus DL, Meireles OR. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg 2019; 270(3): 414–421

[8]

Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018; 268(1): 70–76

[9]

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500–510

[10]

Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 2019; 16(11): 703–715

[11]

Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, Lenane P, Moloney FJ, Yazdabadi A. Artificial intelligence in dermatology—where we are and the way to the future: a review. Am J Clin Dermatol 2020; 21(1): 41–47

[12]

Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P. Surgical data science for next-generation interventions. Nat Biomed Eng 2017; 1(9): 691–696

[13]

Udelsman R, Donovan P, Shaw C. Cure predictability during parathyroidectomy. World J Surg 2014; 38(3): 525–533

[14]

Harangi B, Hajdu A, Lampe R, Torok P. Recognizing ureter and uterine artery in endoscopic images using a convolutional neural network. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). 2017. 726–727. doi: 10.1109/CBMS.2017.137

[15]

André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. Endomicroscopic video retrieval using mosaicing and visualwords. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2010. doi: 10.1109/isbi.2010.5490265

[16]

André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. Learning semantic and visual similarity for endomicroscopy video retrieval. IEEE Trans Med Imaging 2012; 31(6): 1276–1288

[17]

André B, Vercauteren T, Perchant A, Buchner A, Wallace M, Ayache N. Endomicroscopic image retrieval and classification using invariant visual features. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009. doi: 10.1109/isbi.2009.5193055

[18]

Kohandani Tafresh M, Linard N, André B, Ayache N, Vercauteren T. Semi-automated query construction for content-based endomicroscopy video retrieval. In: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2014. Springer International Publishing, 2014. 89–96. doi: 10.1007/978-3-319-10404-1_12

[19]

Gu Y, Yang J, Yang GZ. Multi-view multi-modal feature embedding for endomicroscopy mosaic classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2016. 11–19

[20]

Gu Y, Vyas K, Yang J, Yang GZ. Unsupervised feature learning for endomicroscopy image retrieval. In: Medical Image Computing and Computer Assisted Intervention — MICCAI 2017. Springer International Publishing, 2017. 64–71 doi: 10.1007/978-3-319-66179-7_8

[21]

Quellec G, Lamard M, Cazuguel G, Droueche Z, Roux C, Cochener B. Real-time retrieval of similar videos with application to computer-aided retinal surgery. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 4465–4468

[22]

Ritschel K, Pechlivanis I, Winter S. Brain tumor classification on intraoperative contrast-enhanced ultrasound. Int J CARS 2015; 10(5): 531–540

[23]

Ilunga-Mbuyamba E, Lindner D, Avina-Cervantes J, Arlt F, Rostro-Gonzalez H, Cruz-Aceves I, Chalopin C. Fusion of intraoperative 3D B-mode and contrast-enhanced ultrasound data for automatic identification of residual brain tumors. Appl Sci (Basel) 2017; 7(4): 415

[24]

Dollar P, Tu Z, Perona P, Belongie S. Integral channel features. In: Procedings of the British Machine Vision Conference. 2009. doi: 10.5244/c.23.91

[25]

Wan S, Sun S, Bhattacharya S, Kluckner S, Gigler A, Simon E, Fleischer M, Charalampaki P, Chen T, Kamen A. Towards an efficient computational framework for guiding surgical resection through intra-operative endo-microscopic pathology. In: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. Springer International Publishing, 2015. 421–429. doi: 10.1007/978-3-319-24553-9_52

[26]

Kamen A, Sun S, Wan S, Kluckner S, Chen T, Gigler AM, Simon E, Fleischer M, Javed M, Daali S, Igressa A, Charalampaki P. Automatic tissue differentiation based on confocal endomicroscopic images for intraoperative guidance in neurosurgery. BioMed Res Int 2016; 2016: 6183218

[27]

Li Y, Charalampaki P, Liu Y, Yang GZ, Giannarou S. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J CARS 2018; 13(8): 1187–1199

[28]

Couceiro S, Barreto JP, Freire P, Figueiredo P. Description and classification of confocal endomicroscopic images for the automatic diagnosis of inflammatory bowel disease. In: Machine Learning in Medical Imaging. Springer Berlin Heidelberg, 2012. 144–151. doi: 10.1007/978-3-642-35428-1_18

[29]

Halicek M, Lu G, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, Chen AY, Fei B. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J Biomed Opt 2017; 22(6): 60503

[30]

Halicek M, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, Chen AY, Fei B. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng 2018; 104690X doi: 10.1117/12.2289023

[31]

Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Piñeiro JF, Sosa C, O’Shanahan AJ, Bisshopp S, Espino C, Márquez M, Hernández M, Carrera D, Morera J, Callico GM, Sarmiento R, Fei B. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors (Basel) 2019; 19(4): 920

[32]

Hou F, Liang Y, Yang Z, Gu W, Yu Y. Automatic identification of metastatic lymph nodes in OCT images. Proceedings Volume 10867, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII; 108673G. 2019. doi: 10.1117/12.2511588

[33]

Tian S, Yin XC, Wang ZB, Zhou F, Hao HW. A VidEo-Based Intelligent Recognition and Decision System for the phacoemulsification cataract surgery. Comput Math Methods Med 2015; 2015: 202934

[34]

Fan B, Li HX, Hu Y. An intelligent decision system for intraoperative somatosensory evoked potential monitoring. IEEE Trans Neural Syst Rehabil Eng 2016; 24(2): 300–307

[35]

Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg 2019; 154(11): 1064

[36]

Lalys F, Jannin P. Surgical process modelling: a review. Int J CARS 2014; 9(3): 495–511

[37]

Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018; 125(8): 1264–1272

[38]

Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019; 3(3): 173–182

[39]

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115–118

[40]

Safdar NM, Banja JD, Meltzer CC. Ethical considerations in artificial intelligence. Eur J Radiol 2020; 122: 108768

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (241KB)

Supplementary files

FMD-20035-OF-HD_suppl_1

5063

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/