PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder

Xiao He , Chentao Jin , Mindi Ma , Rui Zhou , Shuang Wu , Haoying Huang , Yuting Li , Qiaozhen Chen , Mingrong Zhang , Hong Zhang , Mei Tian

Front. Med. ›› 2019, Vol. 13 ›› Issue (5) : 602 -609.

PDF (4496KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (5) : 602 -609. DOI: 10.1007/s11684-019-0704-x
RESEARCH ARTICLE
RESEARCH ARTICLE

PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder

Author information +
History +
PDF (4496KB)

Abstract

Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P<0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P<0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.

Keywords

panic disorder (PD) / positron emission tomography (PET) / optogenetics / dorsal periaqueductal gray (dPAG)

Cite this article

Download citation ▾
Xiao He, Chentao Jin, Mindi Ma, Rui Zhou, Shuang Wu, Haoying Huang, Yuting Li, Qiaozhen Chen, Mingrong Zhang, Hong Zhang, Mei Tian. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder. Front. Med., 2019, 13(5): 602-609 DOI:10.1007/s11684-019-0704-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meier SM, Deckert J. Genetics of anxiety disorders. Curr Psychiatry Rep 2019; 21(3): 16

[2]

Tuescher O, Protopopescu X, Pan H, Cloitre M, Butler T, Goldstein M, Root JC, Engelien A, Furman D, Silverman M, Yang Y, Gorman J, LeDoux J, Silbersweig D, Stern E. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord 2011; 25(2): 251–257

[3]

Goossens L, Leibold N, Peeters R, Esquivel G, Knuts I, Backes W, Marcelis M, Hofman P, Griez E, Schruers K. Brainstem response to hypercapnia: a symptom provocation study into the pathophysiology of panic disorder. J Psychopharmacol 2014; 28(5): 449–456

[4]

Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16(9): 927–931

[5]

Boshuisen ML, Ter Horst GJ, Paans AM, Reinders AA, den Boer JA. rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 2002; 52(2): 126–135

[6]

Iacono RP, Nashold BS Jr. Mental and behavioral effects of brain stem and hypothalamic stimulation in man. Hum Neurobiol 1982; 1(4): 273–279

[7]

Bertoglio LJ, de Bortoli VC, Zangrossi H Jr. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 2007; 1156: 133–138

[8]

Schenberg LC, Vasquez EC, da Costa MB. Cardiac baroreflex dynamics during the defence reaction in freely moving rats. Brain Res 1993; 621(1): 50–58

[9]

Schenberg LC, Bittencourt AS, Sudré EC, Vargas LC. Modeling panic attacks. Neurosci Biobehav Rev 2001; 25(7-8): 647–659

[10]

Moreira FA, Gobira PH, Viana TG, Vicente MA, Zangrossi H, Graeff FG. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354(1): 119–125

[11]

Vargas LC, Schenberg LC. Long-term effects of clomipramine and fluoxetine on dorsal periaqueductal grey-evoked innate defensive behaviours of the rat. Psychopharmacology (Berl) 2001; 155(3): 260–268

[12]

Hogg S, Michan L, Jessa M. Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology 2006; 51(1): 141–145

[13]

Fogaça MV, Lisboa SF, Aguiar DC, Moreira FA, Gomes FV, Casarotto PC, Guimarães FS. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res 2012; 45(4): 357–365

[14]

Sergio TO, Spiacci A Jr, Zangrossi H Jr. Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology 2014; 49: 321–330

[15]

Ullah F, Dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RL, Khan AU, Oliveira R, Coimbra NC. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319: 135–147

[16]

Graeff FG. Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 2004; 28(3): 239–259

[17]

Chen S, Zhou H, Guo S, Zhang J, Qu Y, Feng Z, Xu K, Zheng X. Optogenetics based rat-robot control: optical stimulation encodes “Stop” and “Escape” commands. Ann Biomed Eng 2015; 43(8): 1851–1864

[18]

Sandner G, Di Scala G, Rocha B, Angst MJ. C-fos immunoreactivity in the brain following unilateral electrical stimulation of the dorsal periaqueductal gray in freely moving rats. Brain Res 1992; 573(2): 276–283

[19]

Lim LW, Temel Y, Visser-Vandewalle V, Blokland A, Steinbusch H. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. J Chem Neuroanat 2009; 38(2): 83–96

[20]

Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK, Volkow ND. Mapping brain metabolic connectivity in awake rats with mPET and optogenetic stimulation. J Neurosci 2013; 33(15): 6343–6349

[21]

Zhu Y, Xu K, Xu C, Zhang J, Ji J, Zheng X, Zhang H, Tian M. PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with implanted electrodes. J Nucl Med 2016; 57(7): 1141–1145

[22]

Zhu Y, Du R, Zhu Y, Shen Y, Zhang K, Chen Y, Song F, Wu S, Zhang H, Tian M. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med 2016; 57(9): 1474–1477

[23]

Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36(10): 587–597

[24]

Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, Logan J, Wong C, Thanos PK, Ma Y, Pradhan K. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009; 17(1): 60–65

[25]

Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133(4): 873–892

[26]

McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004; 115(3): 589–595

[27]

LaLumiere RT. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 2011; 4(1): 1–6

[28]

Menant O, Andersson F, Zelena D, Chaillou E. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 2016; 77: 110–120

[29]

Vianna DM, Brandão ML. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 2003; 36(5): 557–566

[30]

Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2017; 147: 66–78

[31]

Chakravarthy VS, Joseph D, Bapi RS. What do the basal ganglia do? A modeling perspective. Biol Cybern 2010; 103(3): 237–253

[32]

Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, Johansen-Berg H. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 2005; 103(6): 1030–1034

[33]

Moers-Hornikx VM, Vles JS, Lim LW, Ayyildiz M, Kaplan S, Gavilanes AW, Hoogland G, Steinbusch HW, Temel Y. Periaqueductal grey stimulation induced panic-like behaviour is accompanied by deactivation of the deep cerebellar nuclei. Cerebellum 2011; 10(1): 61–69

[34]

Stark-Inbar A, Dayan E. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38(12): 5970–5986

[35]

Garakani A, Buchsbaum MS, Newmark RE, Goodman C, Aaronson CJ, Martinez JM, Torosjan Y, Chu KW, Gorman JM. The effect of doxapram on brain imaging in patients with panic disorder. Eur Neuropsychopharmacol 2007; 17(10): 672–686

[36]

Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry 2017; 7(1): 12–33

[37]

Bisaga A, Katz JL, Antonini A, Wright CE, Margouleff C, Gorman JM, Eidelberg D. Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 1998; 155(9): 1178–1183

[38]

Bernal-Casas D, Lee HJ, Weitz AJ, Lee JH. Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 2017; 93(3): 522–532.e5

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4496KB)

Supplementary files

FMD-19013-OF-TM_suppl_1

FMD-19013-OF-TM_suppl_2

FMD-19013-OF-TM_suppl_3

2106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/