Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases

Changlin Cao , Jingxian Gu , Jingyao Zhang

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 169 -177.

PDF (214KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 169 -177. DOI: 10.1007/s11684-017-0505-z
REVIEW
REVIEW

Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases

Author information +
History +
PDF (214KB)

Abstract

Sensitive and useful biomarkers for the diagnosis and prognosis of infectious diseases have been widely developed. An example of these biomarkers is triggering receptor expressed on myeloid cell-1 (TREM-1), which is a cell surface receptor expressed on monocytes/macrophages and neutrophils. TREM-1 amplifies inflammation by activating the TREM-1/DAP12 pathway. This pathway is triggered by the interaction of TREM-1 with ligands or stimulation by bacterial lipopolysaccharide. Consequently, pro-inflammatory cytokines and chemokines are secreted. Soluble TREM-1 (sTREM-1) is a special form of TREM-1 that can be directly tested in human body fluids and well-known biomarker for infectious diseases. sTREM-1 level can be potentially used for the early diagnosis and prognosis prediction of some infectious diseases, including infectious pleural effusion, lung infections, sepsis, bacterial meningitis, viral infections (e.g., Crimean Congo hemorrhagic fever and dengue fever), fungal infections (e.g., Aspergillus infection), and burn-related infections. sTREM-1 is a more sensitive and specific biomarker than traditional indices, such as C-reactive protein and procalcitonin levels, for these infectious diseases. Therefore, sTREM-1 is a feasible biomarker for the targeted therapy and rapid and early diagnosis of infectious diseases.

Keywords

soluble triggering receptor expressed on myeloid cells-1 / infectious diseases / diagnosis and prognosis / biomarker

Cite this article

Download citation ▾
Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases. Front. Med., 2017, 11(2): 169-177 DOI:10.1007/s11684-017-0505-z

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

TREM-1 expression is upregulated in bacterial and fungal infection cases but is poorly expressed in non-infectious inflammatory diseases [,]. TREM-1 expression can be stimulated by bacterial lipopolysaccharide in infections and innate immune responses []. TREM-1 modulates inflammatory responses primarily through the DNA-activating protein 12 (DAP12) signaling pathway [,]. TREM-1/DAP12 pathway can be activated by recognizing soluble cell lysates induced by exogenous pathogens []. In addition to invading pathogens, endogenous ligands on cellular surfaces can be recognized by TREM-1; however, this phenomenon remains unexplored []. Concurrently, sTREM-1 exhibits anti-inflammatory properties and exerts a decay activity to activate TREM-1 in binding ligands for TREM-1 receptors []. As an immunoreceptor tyrosine-based activation motif (ITAM)-bearing transmembrane adapter protein expressed on the surface of natural killer cells and myeloid cells, DAP12 contains a short extracellular domain of only 13–16 amino acids; by comparison, DAP12-associating receptors possess long extracellular domains [ ,]. These receptors, including myeloid DAP12-associating lectin-1 (MDL-1), TREM receptor family, and signal regulatory protein b1 (SIRPb1), consist of small cytoplasmic regions without signal transduction functions []. When DAP12 and its receptor form a complex, the cytoplasmic ITAM of DAP is phosphorylated, and the signaling pathway is consequently stimulated []. Receptor complexes then lead to the degranulation of neutrophils and release of interleukin (IL)-8, monocyte chemotactic protein-1, and tumor necrosis factor (TNF)-α, which can initiate and amplify inflammatory responses [] (Fig. 1). The activation of neutrophils and monocytes then causes a series of intracellular changes, including calcium mobilization and tyrosine phosphorylation, which help amplify inflammation []. sTREM-1 levels can be measured through ELISA, and TREM-1 receptor expression on the surface of myeloid cells in blood or other body fluids can be determined through flow cytometry []. sTREM-1 levels, which can precisely correspond to the changes in TREM-1, can also be detected. TREM-1/sTREM-1 probably plays an important role in infectious diseases. Moreover, the single-nucleotide polymorphisms of TREM-1 are associated with the susceptibility and prognosis of different diseases, such as coronary artery disease (CAD), sepsis, septic shock, infective endocarditis, and intestinal Behcet’s disease [] (Table 1). However, sTREM-1 may participate in non-infectious diseases, which are discussed in a separate section. The underlying mechanism has yet to be fully clarified. Although the source of sTREM-1 remains elusive, the potential role of sTREM-1 in regulating infectious diseases has been extensively investigated. In this paper, different views on this component are summarized to discuss the close connection between sTREM-1 and infectious diseases.

sTREM-1 and infectious pleural effusion

Pleural effusion is a common complication of various diseases. The gold standard for diagnosing pleural effusions is Light’s Criteria, which can differentiate a transudate from an exudate but is unable to identify fluid etiology []. Although numerous medical tests can help determine the pleural effusion etiology, it remains challenging. A new specific biomarker for diagnosing pleural effusion is urgently needed in clinical practice. Sim and Huang et al. [,] found that sTREM-1 levels in pleural fluid greatly exceed those in serum because they reflect the local inflammatory process, which is higher than the systemic one. Liu et al. [] found that the sTREM-1 levels are significantly higher in para-pneumonic effusions than in tuberculous effusions. Similarly, Chan et al. [] found that pleural sTREM-1 at a cut-off value of 374 pg/ml yields a sensitivity of 93.8% and a specificity of 90.9% in differentiating bacterial pleural effusion from tuberculous pleurisy. Huanget al. [] included 109 patients and demonstrated the similarity between sensitivity and specificity in distinguishing bacterial effusions from effusions with other etiologies when a cut-off value is settled at 768.1 pg/ml. In bacterial pleural effusion, sTREM-1 levels are higher in empyema than in para-pneumonic effusions []. As a result, sTREM-1 has been proven a useful biomarker in the differential diagnosis of the etiology of pleural effusions. Moreover, Determann et al. [] proved that sTREM-1 has advantages in detecting infections compared with C-reactive protein (CRP), a recognized indicator in the past. However, Porcel et al. [] assert that sTREM-1 is not superior to CRP in separating infectious from non-infectious states. Notable differences in cut-off values can be attributed to the different specimen collection methods and the lack of standardization of the ELISA technique. However, most of these studies still supported the notion that pleural sTREM-1, at an appropriate cut-off value, can help differentiate between bacterial effusions and effusions from other etiologies. In conclusion, sTREM-1 may help clinicians to make an early diagnosis of empyema and guide the application of antibiotics.

sTREM-1 and lung infections

The early diagnosis of lung infections remains challenging, particularly in clearly identifying the cause of disease, because microbiological studies are often negative; this may delay the definitive diagnosis for 24–48 h. Novel methods are required to help clinicians make rapid and accurate diagnoses. Phua et al. [] demonstrated that serum sTREM-1 levels are elevated in community-acquired pneumonia (CAP). Porfyridis et al. [] found that early serum levels of sTREM-1 greater than 180 pg/ml in CAP are associated with unfavorable prognosis, supporting the results by Phua. Among CAP patients receiving treatment, Chao et al. [] found that the level of sTREM-1 remained elevated in the non-response group, but rapidly decreased in the response group. A recent study demonstrated that high levels of serum sTREM-1 indicated poor outcomes in TB patients []. sTREM-1 level is a good predictor of the prognosis of lung infection patients. Moreover, sTREM-1 has great value in diagnosing numerous lung infections, such as lower respiratory tract infections [,]. Additionally, sTREM-1 assay in alveolar and peritoneal fluids is useful for assessing pulmonary and peritoneal infections in critical-state patients and discriminating between pulmonary and extra-pulmonary infections during acute respiratory failure []. sTREM-1 can be detectable and exists at different levels in sera and other body fluids, as well as pathological fluid at local inflammatory sites; moreover, it is associated with numerous diseases at a staggering rate and could generate new clinical applications and provide more scientific ideas in studying this biomarker. sTREM-1 might be a potent biomarker closely related to the entire lung infection process.

Studies have been conducted of sTREM-1 and ventilator-associated pneumonia (VAP), a pneumonia that occurs more than 48 h after the initiation of endotracheal intubation and mechanical ventilation; moreover, it is the most common complication in intubated patients and substantially increases ICU patient mortality rate []. An overestimation of VAP occurs when the diagnosis is based on clinical suspicion and results in unnecessary antibiotic therapy []. Dupuy et al. [] reported that sTREM-1 might be a potent biomarker in antibiotic therapy in the future. Tests using sTREM-1 may help in diagnosing and eliminating unnecessary antibiotic exposure in the patient. Gibot et al. [,] found that rapid detection of sTREM-1 in bronchial alveolar lavage (BAL) fluid is useful for differentiating patients receiving mechanical ventilation for bacterial or fungal pneumonia from those without pneumonia, particularly for patients with untypical manifestations. Furthermore, sTREM-1 levels in non-directed bronchial lavage fluid (NBLF) increased significantly during a 6-day period until the day of VAP diagnosis, suggesting that a cut-off value of 200 pg/ml preceded by an increase of 100 pg/ml is diagnostic for pneumonia in ventilated patients []. Moreover, sTREM-1 can be detected in the exhaled ventilator condensate (EVC) collected from the expiratory line of patients receiving mechanical ventilation. The study demonstrated that sTREM-1 detection in EVC may improve the ability of clinicians to distinguish patients with VAP from those without pneumonia; however, further research is needed on account of the small study sample []. Similar results were proven in the diagnosis of VAP in patients after cardiac surgery []. These results showed the wide clinical prospect of sTREM-1 in VAP. Moreover, a prospective observational study by Grover et al. [] demonstrated that a biomarker panel, including cellular and soluble TREM-1, could differentiate VAP from non-VAP more precisely than by detecting a single biomarker, although the level of sTREM-1 is significantly more elevated in VAP than in non-VAP. Similar to other diseases, sTREM-1 concentrations in BAL fluid can prompt prognosis in VAP patients. A study that included 35 VAP patients showed that dynamic sTREM-1 levels in BAL fluids during the first 7–9 days of VAP treatment had better prognostic ability than APACHE II scores in predicting outcomes, and this may help the physician in regulating antibiotic use [].

However, not all studies support the use of detecting sTREM-1 in VAP patients. Two articles published in 2009 showed that the differences between the mean sTREM-1 concentrations in patients with definite VAP and those with definite absence of VAP or patients without confirmed VAP were not statistically significant, implying that measuring sTREM-1 in bronchial alveolar lavage fluid (BALF) samples as a diagnostic test for VAP may not be discriminative [,45]. Several reasons may explain these inconsistent findings, including the different methods for sTREM-1 detection, different diagnostic criteria for VAP, and antibiotics use before sample collection. Therefore, studies with large populations using similar study designs, similar standardized study methods, sample collection, and analysis are necessary.

sTREM-1 and sepsis

Sepsis is a systemic response to infection. No gold standard exists for diagnosing sepsis because the traditional biological markers, like CRP and PCT, often overlap with other non-infectious causes of systemic inflammation, and no biological markers have been satisfactory []. The potential value of sTREM-1 in dealing with sepsis has attracted investigators’ attention. Gibot et al. and other researchers [,,] found that plasma sTREM-1 levels at a cut-off value of 60 ng/ml yield a positive success ratio of 8.6 and a negative likelihood ratio of 0.04 for differentiating patients with sepsis from those with non-infectious cases with systemic inflammatory response syndrome. Moreover, sTREM-1 is of great value for early diagnosis and assessment of severity and prognosis of neonatal sepsis []. Furthermore, sTREM-1 level is a good predictor of septic patients [,]. Moreover, sTREM-1 might have value in exclusively diagnosing infections in postoperative patients with secondary peritonitis []. Giamarellos-Bourboulis et al. [] argued that sTREM-1 kinetics are similar to IL-10, which play an anti-inflammatory role in the septic process. Thus, sTREM-1 protects the body during inflammation. They hypothesized that changes in sTREM-1/TNF-α ratios could determine the progression from sepsis, to severe sepsis, and to septic shock []. A prospective cohort study showed that sTREM-1 levels in survivors are lower than those in non-survivors and yielded a sensitivity of 85.7% and a specificity of 75.7% at a cut-off value of 252.05 pg/ml, demonstrating that sTREM-1 is a good prognostic indicator []. Zhang et al. [] found that sTREM-1 levels are the more sensitive and specific index in the diagnoses and assessment of septic severity compared with CRP and PCT. Unfortunately, sTREM-1, along with PCT and CRP, could not determine whether new fevers are due to bacteria or not; however, the sTREM-1 level is able to assess the prognosis of bacteremia []. In contrast, sTREM-1 is a poor prognostic factor in patients with infection []. The ability of sTREM-1 in distinguishing sepsis from non-infectious SIRS was suspected in several studies []. However, when combined with other sepsis markers, the assay may significantly improve clinicians’ ability to differentiate patients with sepsis from those with systemic inflammations of non-infectious origin [,69]. In addition to serum sTREM-1, Su et al. [] explored the diagnostic potential of urine sTREM-1 for early sepsis identification, severity prognosis assessment, and secondary acute kidney injury (AKI). TREM-1 testing is more sensitive than testing for WBC, serum CRP, and serum PCT during early sepsis diagnosis and is a good predictor for secondary AKI [,]. Moreover, Dai et al. [,73] reported that sTREM-1 level is significantly increased in critically ill patients with sepsis-associated AKI compared with non-AKI septic patients whose predictive and diagnostic values were just as good as neutrophil gelatinase-associated lipocalin (NGAL) and cystatin-C (Cys-C), which are two traditional biomarkers. In addition to sepsis-related AKI, serum sTREM-1 is reported to be an independent risk factor for N-terminal pro-B-type natriuretic peptide (NT-proBNP) in sepsis-associated myocardial dysfunction [,]. sTREM-1 is closely related to the severity and prognosis of Streptococcus pyogenes-induced sepsis []. Therefore, sTREM-1 can be used in sepsis-associated organ dysfunction and other clinical conditions. In conclusion, sTREM-1 is a promising biomarker in clinical practice for sepsis.

sTREM-1 and bacterial meningitis

Other infectious diseases

Non-infectious diseases

sTREM-1 is an attractive molecule in infectious diseases and non-infectious inflammatory diseases. sTREM-1 is a crucial part of innate immune responses, which leads to the release of pro-inflammatory cytokines and chemokines []. Essa et al. [] found sTREM-1 levels, just like CRP and TNF-α, are significantly elevated in patients with chronic kidney disease on hemodialysis. sTREM-1 levels have been associated to bronchiectasis and disease-modifying anti-rheumatic drug (DMARD)-naive early rheumatoid arthritis (ERA), an autoimmune disease with chronic inflammation in the synovial joints []. In addition to pulmonary infection, sTREM-1 levels were reported to be increased significantly in patients with chronic obstructive pulmonary disease and differ in 3 clinical classifications []. Furthermore, TREM-1/sTREM-1 has a relationship with gout and febrile neutropenia [,]. Additionally, serum sTREM-1 is upregulated in inflammatory bowel disease patients, but its correlation to the disease activity remains uncertain [,]. In 2011, Hermus et al. [] showed that sTREM-1 is increased in patients with CAD and peripheral artery disease (PAD). This study is the first to demonstrate the key role of sTREM-1 in atherosclerosis. Apart from benign diseases, TREM-1 expression is significantly high in several types of cancer. TREM-1 is expressed in hepatocellular carcinoma (HCC) cells and hepatic stellate cells, a type of tumor-associated cell; and TREM-1 is related to tumor progression and HCC prognosis [,]. Yuan et al. [] found TREM-1 expression level is significantly high in patients with non-small cell lung cancer. TREM-1 is reported to be useful in differential diagnosis of craniopharyngioma []. In conclusion, sTREM-1 and TREM-1 are potential biomarkers for infectious and non-infectious diseases.

Conclusions

sTREM-1 is essential for myeloid cell-mediated inflammatory responses, as demonstrated by previous studies. Although the ability of sTREM-1 in diagnosing infectious diseases remains controversial, sTREM-1 detection is a promising technique for targeted therapy in sepsis diagnosis. The origin and release mechanisms of sTREM-1, particularly the molecular structure of its natural ligand and the accurate interaction between them, are unclear. However, we can predict these characteristics by using TREM-1, which is already known. TREM-1 forms a “head-to-tail” dimer with an extracellular V-type immunoglobulin-like domain (Ig-V) comprising approximately 120 amino acids [,]. The Ig-V, providing two possible binding sites for ligands, is followed by a region of approximately 70 amino acids that link to the transmembrane part of TREM-1 []. Additionally, TREM-1/DAP12 pathway affects both innate and adaptive immune responses, which provide insights into the clinical perspectives of sTREM-1 [ ]. Further studies should focus on the molecular mechanisms of sTREM-1 and infectious diseases to understand its interactions during redox reactions and with inflammatory factors. Additional evidence should also be obtained to support the predictive and prognostic role of sTREM-1 in infections from large-scale multi-center studies enrolling a substantial number of patients, particularly children and neonates. Fortunately, this molecule has been extensively investigated. These problems can be solved, and breakthroughs can be achieved in terms of the control and treatment of inflammatory diseases. sTREM-1 is a possible indispensable biomarker for clinical applications.

References

[1]

Bouchon ADietrich JColonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000164(10): 4991–4995

[2]

Mahdy AMLowes DAGalley HFBruce JEWebster NR. Production of soluble triggering receptor expressed on myeloid cells by lipopolysaccharide-stimulated human neutrophils involves de novo protein synthesis. Clin Vaccine Immunol 200613(4): 492–495

[3]

Radaev SKattah MRostro BColonna MSun PD. Crystal structure of the human myeloid cell activating receptor TREM-1. Structure 200311(12): 1527–1535

[4]

Lemarié JBarraud DGibot S. Host response biomarkers in sepsis: overview on sTREM-1 detection. Methods Mol Biol 20151237: 225–239

[5]

Gingras MCLapillonne HMargolin JF. TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. Mol Immunol 200238(11): 817–824

[6]

Palazzo SJSimpson TSchnapp LM. Triggering receptor expressed on myeloid cells type 1 as a potential therapeutic target in sepsis. Dimens Crit Care Nurs 201231(1): 1–6

[7]

Gómez-Piña VSoares-Schanoski ARodríguez-Rojas ADel Fresno CGarcía FVallejo-Cremades MTFernández-Ruiz IArnalich FFuentes-Prior PLópez-Collazo E. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J Immunol 2007179(6): 4065–4073

[8]

Bouchon AFacchetti FWeigand MAColonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001410(6832): 1103–1107

[9]

Colonna MFacchetti F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J Infect Dis 2003187( Suppl 2): S397–S401

[10]

Nochi HAoki NOikawa KYanai MTakiyama YAtsuta YKobayashi HSato KTateno MMatsuno TKatagiri MXing ZKimura S. Modulation of hepatic granulomatous responses by transgene expression of DAP12 or TREM-1-Ig molecules. Am J Pathol 2003162(4): 1191–1201

[11]

Tessarz ASCerwenka A. The TREM-1/DAP12 pathway. Immunol Lett 2008116(2): 111–116

[12]

Aoki NKimura SXing Z. Role of DAP12 in innate and adaptive immune responses. Curr Pharm Des 20039(1): 7–10

[13]

Campbell KSColonna M. DAP12: a key accessory protein for relaying signals by natural killer cell receptors. Int J Biochem Cell Biol 199931(6): 631–636

[14]

Kutikhin AGPonasenko AVKhutornaya MVYuzhalin AEZhidkova IISalakhov RRGolovkin ASBarbarash OLBarbarash LS. Association of TLR and TREM-1 gene polymorphisms with atherosclerosis severity in a Russian population. Meta Gene 20169: 76–89

[15]

Golovkin ASPonasenko AVKhutornaya MVKutikhin AGSalakhov RRYuzhalin AEZhidkova IIBarbarash OLBarbarash LS. Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. Gene 2014550(1): 101–109

[16]

Peng LSLi JZhou GSDeng LHYao HG. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and septic shock in a Chinese Han population. World J Emerg Med 20156(2): 123–130

[17]

Chen QZhou HWu SWang HLv CCheng BXie GFang X. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol 200869(3): 220–226

[18]

Su LLiu CLi CJiang ZXiao KZhang XLi MYan PFeng DXie L. Dynamic changes in serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and its gene polymorphisms are associated with sepsis prognosis. Inflammation 201235(6): 1833–1843

[19]

Jung ESKim SWMoon CMShin DJSon NHKim ESLee HJHong SPKim TIKim WHCheon JH. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and inflammatory bowel diseases in the Korean population. Life Sci 201189(9-10): 289–294

[20]

Lam CWLaw CY. Pleural effusion lipoproteins measured by NMR spectroscopy for diagnosis of exudative pleural effusions: a novel tool for pore-size estimation. J Proteome Res 201413(9): 4104–4112

[21]

Sim YSLee JHChun EMChang JH. Diagnostic utility of pleural fluid soluble triggering receptor expressed on myeloid cells 1 protein in patients with exudative pleural effusion. Tuberc Respir Dis (Seoul) 200762(6): 499–505

[22]

Huang LYShi HZLiang QLWu YBQin XJChen YQ. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion. Chin Med J (Engl) 2008121(17): 1656–1661

[23]

Liu CLHsieh WYWu CLKuo HTLu YT. Triggering receptor expressed on myeloid cells-1 in pleural effusions: a marker of inflammatory disease. Respir Med 2007101(5): 903–909

[24]

Chan MCChang KMChao WCLin LYKuo BIHsu JYWu CL. Evaluation of a new inflammatory molecule (triggering receptor expressed on myeloid cells-1) in the diagnosis of pleural effusion. Respirology 200712(3): 333–338

[25]

Determann RMAchouiti AAEl Solh AABresser PVijfhuizen JSpronk PESchultz MJ. Infectious pleural effusions can be identified by sTREM-1 levels. Respir Med 2010104(2): 310–315

[26]

Porcel JMVives MCao GBielsa SRuiz-González AMartínez-Iribarren AEsquerda A. Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J 200934(6): 1383–1389

[27]

Phua JKoay ESZhang DTai LKBoo XLLim KCLim TK. Soluble triggering receptor expressed on myeloid cells-1 in acute respiratory infections. Eur Respir J 200628(4): 695–702

[28]

Porfyridis IPlachouras DKaragianni VKotanidou APapiris SAGiamarellou HGiamarellos-Bourboulis EJ. Diagnostic value of triggering receptor expressed on myeloid cells-1 and C-reactive protein for patients with lung infiltrates: an observational study. BMC Infect Dis 201010(1): 286

[29]

Chao WCWang CHChan MCChow KCHsu JYWu CL. Predictive value of serial measurements of sTREM-1 in the treatment response of patients with community-acquired pneumonia. J Formos Med Assoc 2007106(3): 187–195

[30]

Huang CTLee LNHo CCShu CCRuan SYTsai YJWang JYYu CJ. High serum levels of procalcitonin and soluble TREM-1 correlated with poor prognosis in pulmonary tuberculosis. J Infect 201468(5): 440–447

[31]

Shi JXLi JSHu RLi CHWen YZheng HZhang FLi Q. Diagnostic value of sTREM-1 in bronchoalveolar lavage fluid in ICU patients with bacterial lung infections: a bivariate meta-analysis. PLoS One 20138(5): e65436

[32]

Ye WHu YZhang RYing K. Diagnostic value of the soluble triggering receptor expressed on myeloid cells-1 in lower respiratory tract infections: a meta-analysis. Respirology 201419(4): 501–507

[33]

Ramirez PKot PMarti VGomez MDMartinez RSaiz VCatala FBonastre JMenendez R. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in patients with acute respiratory distress syndrome and abdominal diseases: a preliminary observational study. Crit Care 201115(1): R50

[34]

Davis KA. Ventilator-associated pneumonia: a review. J Intensive Care Med 200621(4): 211–226

[35]

Torres AEwig S. Diagnosing ventilator-associated pneumonia. N Engl J Med 2004350(5): 433–435

[36]

Dupuy AMPhilippart FPéan YLasocki SCharles PEChalumeau MClaessens YEQuenot JPGuen CGRuiz SLuyt CERoche NStahl JPBedos JPPugin JGauzit RMisset BBrun-Buisson C; Maurice Rapin Institute Biomarkers Group. Role of biomarkers in the management of antibiotic therapy: an expert panel review: I— currently available biomarkers for clinical use in acute infections. Ann Intensive Care 20133(1): 22

[37]

Gibot SCravoisy ALevy BBene MCFaure GBollaert PE. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 2004350(5): 451–458

[38]

Siranović MKovac JGopcević SKelecić MKovac NRode BVucić M. Human soluble TREM-1: lung and serum levels in patients with bacterial ventilator associated pneumonia. Acta Clin Croat 201150(3): 345–349

[39]

Determann RMMillo JLGibot SKorevaar JCVroom MBvan der Poll TGarrard CSSchultz MJ. Serial changes in soluble triggering receptor expressed on myeloid cells in the lung during development of ventilator-associated pneumonia. Intensive Care Med 200531(11): 1495–1500

[40]

Horonenko GHoyt JCRobbins RASingarajah CUUmar APattengill JHayden JM. Soluble triggering receptor expressed on myeloid cell-1 is increased in patients with ventilator-associated pneumonia: a preliminary report. Chest 2007132(1): 58–63

[41]

Matsuno AKCarlotti AP. Role of soluble triggering receptor expressed on myeloid cells-1 for diagnosing ventilator-associated pneumonia after cardiac surgery: an observational study. BMC Cardiovasc Disord 201313(1): 107

[42]

Grover VPantelidis PSoni NTakata MShah PLWells AUHenderson DCKelleher PSingh S. A biomarker panel (Bioscore) incorporating monocytic surface and soluble TREM-1 has high discriminative value for ventilator-associated pneumonia: a prospective observational study. PLoS One 20149(10): e109686

[43]

Wu CLLu YTKung YCLee CHPeng MJ. Prognostic value of dynamic soluble triggering receptor expressed on myeloid cells in bronchoalveolar lavage fluid of patients with ventilator-associated pneumonia. Respirology 201116(3): 487–494

[44]

Anand NJZuick SKlesney-Tait JKollef MH. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in BAL fluid of patients with pulmonary infiltrates in the ICU. Chest 2009135(3): 641–647

[45]

Oudhuis GJBeuving JBergmans DStobberingh EEten Velde GLinssen CFVerbon A. Soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid is not predictive for ventilator-associated pneumonia. Intensive Care Med 200935(7): 1265–1270

[46]

Balk RABone RC. The septic syndrome. Definition and clinical implications. Crit Care Clin 19895(1): 1–8

[47]

Ayres SM. SCCM’s new horizons conference on sepsis and septic shock. Crit Care Med 198513(10): 864–866

[48]

Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 200026(0 Suppl 1): S64–S74

[49]

Bone RCBalk RACerra FBDellinger RPFein AMKnaus WASchein RMSibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992101(6): 1644–1655

[50]

Gibot SKolopp-Sarda MNBéné MCCravoisy ALevy BFaure GCBollaert PE. Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 2004141(1): 9–15

[51]

Richeldi LMariani MLosi MMaselli FCorbetta LBuonsanti CColonna MSinigaglia FPanina-Bordignon PFabbri LM. Triggering receptor expressed on myeloid cells: role in the diagnosis of lung infections. Eur Respir J 200424(2): 247–250

[52]

Saldir MTunc TCekmez FCetinkaya MKalayci TFidanci KBabacan OErdem GKocak NSari EAkgul EOKul M. Endocan and soluble triggering receptor expressed on myeloid cells-1 as novel markers for neonatal sepsis. Pediatr Neonatol 201556(6): 415–421

[53]

Arízaga-Ballesteros VAlcorta-García MRLázaro-Martínez LCAmézquita-Gómez JMAlanís-Cajero JMVillela LCastorena-Torres FLara-Díaz VJ. Can sTREM-1 predict septic shock & death in late-onset neonatal sepsis? A pilot study. Int J Infect Dis 201530: 27–32

[54]

Adly AAIsmail EAAndrawes NGEl-Saadany MA. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. Cytokine 201465(2): 184–191

[55]

Ravetti CGMoura ADVieira ÉLPedroso ÊRTeixeira AL. sTREM-1 predicts intensive care unit and 28-day mortality in cancer patients with severe sepsis and septic shock. J Crit Care 201530(2): 440.e7–440.e13

[56]

Gibot SCravoisy AKolopp-Sarda MNBéné MCFaure GBollaert PELevy B. Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)-1, procalcitonin, and C-reactive protein plasma concentrations during sepsis. Crit Care Med 200533(4): 792–796

[57]

Determann RMvan Till JWvan Ruler Ovan Veen SQSchultz MJBoermeester MA. sTREM-1 is a potential useful biomarker for exclusion of ongoing infection in patients with secondary peritonitis. Cytokine 200946(1): 36–42

[58]

Giamarellos-Bourboulis EJZakynthinos SBaziaka FPapadomichelakis EVirtzili SKoutoukas PArmaganidis AGiamarellou HRoussos C. Soluble triggering receptor expressed on myeloid cells 1 as an anti-inflammatory mediator in sepsis. Intensive Care Med 200632(2): 237–243

[59]

Li ZWang HLiu JChen BLi G. Serum soluble triggering receptor expressed on myeloid cells-1 and procalcitonin can reflect sepsis severity and predict prognosis: a prospective cohort study. Mediators Inflamm 20142014: 641039 

[60]

Zhang JShe DFeng DJia YXie L. Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: a prospective study. BMC Infect Dis 201111(1): 53

[61]

Su LHan BLiu CLiang LJiang ZDeng JYan PJia YFeng DXie L. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis 201212(1): 157

[62]

Velásquez SMatute JDGámez LYEnríquez LEGómez IDToro FValencia MLDe La Rosa GPatiño PJJaimes FA. Characterization of nCD64 expression in neutrophils and levels of s-TREM-1 and HMGB-1 in patients with suspected infection admitted in an emergency department. Biomedica 201333(4): 643–652

[63]

Lin MTWei YFKu SCLin CAHo CCYu CJ. Serum soluble triggering receptor expressed on myeloid cells-1 in acute respiratory distress syndrome: a prospective observational cohort study. J Formos Med Assoc 2010109(11): 800–809

[64]

Henriquez-Camacho CLosa J. Biomarkers for sepsis. BioMed Res Int 20142014: 547818

[65]

Barati MBashar FRShahrami RZadeh MHTaher MTNojomi M. Soluble triggering receptor expressed on myeloid cells 1 and the diagnosis of sepsis. J Crit Care 201025(2): 362.e1–362.e6

[66]

Kofoed KAndersen OKronborg GTvede MPetersen JEugen-Olsen JLarsen K. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care 200711(2): R38

[67]

Latour-Pérez JAlcalá-López AGarcía-García MASánchez-Hernández JFAbad-Terrado CViedma-Contreras JAMasiá MGonzález-Tejera MArizo-León DPorcar MJBonilla-Rovira FGutiérrez F. Diagnostic accuracy of sTREM-1 to identify infection in critically ill patients with systemic inflammatory response syndrome. Clin Biochem 201043(9): 720–724

[68]

Bopp CHofer SBouchon AZimmermann JBMartin EWeigand MA. Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and nonsurvivors in the early stage of acute inflammation. Eur J Anaesthesiol 200926(6): 504–507

[69]

Gibot SCravoisy ADupays RBarraud DNace LLevy BBollaert PE. Combined measurement of procalcitonin and soluble TREM-1 in the diagnosis of nosocomial sepsis. Scand J Infect Dis 200739(6-7): 604–608

[70]

Su LXFeng LZhang JXiao YJJia YHYan PFeng DXie LX. Diagnostic value of urine sTREM-1 for sepsis and relevant acute kidney injuries: a prospective study. Crit Care 201115(5): R250

[71]

Derive MGibot S. Urine sTREM-1 assessment in diagnosing sepsis and sepsis-related acute kidney injury. Crit Care 201115(6): 1013

[72]

Dai XZeng ZFu CZhang SCai YChen Z. Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care 201519(1): 223

[73]

Su LXie LLiu D. Urine sTREM-1 may be a valuable biomarker in diagnosis and prognosis of sepsis-associated acute kidney injury. Crit Care 201519(1): 281

[74]

Tao FPeng LLi JShao YDeng LYao H. Association of serum myeloid cells of soluble triggering receptor-1 level with myocardial dysfunction in patients with severe sepsis. Mediators Inflamm 20132013: 819246

[75]

Zhou GYe LZhang LZhang LZhang YDeng LYao H. Association of myeloid cells of triggering receptor-1 with left ventricular systolic dysfunction in BALB/c mice with sepsis. Mediators Inflamm 20142014: 391492

[76]

Horst SALinnér ABeineke ALehne SHöltje CHecht ANorrby-Teglund AMedina EGoldmann O. Prognostic value and therapeutic potential of TREM-1 in Streptococcus pyogenes- induced sepsis. J Innate Immun 20135(6): 581–590

[77]

Nigrovic LEKuppermann NMalley R. Development and validation of a multivariable predictive model to distinguish bacterial from aseptic meningitis in children in the post-Haemophilus influenzae era. Pediatrics 2002110(4): 712–719

[78]

Determann RMWeisfelt Mde Gans Jvan der Ende ASchultz MJvan de Beek D. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis. Intensive Care Med 200632(8): 1243–1247

[79]

Bishara JHadari NShalita-Chesner MSamra ZOfir OPaul MPeled NPitlik SMolad Y. Soluble triggering receptor expressed on myeloid cells-1 for distinguishing bacterial from aseptic meningitis in adults. Eur J Clin Microbiol Infect Dis 200726(9): 647–650

[80]

Liu YJShao LHZhang JFu SJWang GChen FZZheng FMa RPLiu HHDong XMMa LX. The combination of decoy receptor 3 and soluble triggering receptor expressed on myeloid cells-1 for the diagnosis of nosocomial bacterial meningitis. Ann Clin Microbiol Antimicrob 201514(1): 17

[81]

Altay FAElaldi NŞentürk GÇAltin NGözel MGAlbayrak YŞencan İ. Serum sTREM-1 level is quite higher in Crimean Congo hemorrhagic fever, a viral infection. J Med Virol 201688(9): 1473–1478

[82]

Ruiz-Pacheco JAVivanco-Cid HIzaguirre-Hernández IYEstrada-García IArriaga-Pizano LChacóín-Salinas RFonseca-Coronado SVaughan GRuiz Tovar KRivera-Osorio MPEscobar-Gutiérrez A. TREM-1 modulation during early stages of dengue virus infection. Immunol Lett 2014158(1-2): 183–188

[83]

Wei MTu LLiang YLiu JGong YXiao DZhang Y. The effect of signal transduction pathway of triggering receptor-1 expressed on myeloid cells in acute lung injury induced by paraquat in rats. Chin J Ind Hyg Occup Dis (Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi) 201533(9): 646–651 (in Chinese)

[84]

Burmistrova ALFilippova IuIu. Soluble form of trigger receptor expressed on myeloid cells-1 as a marker of burn wound mixed infection. Zh Mikrobiol Epidemiol Immunobiol 2013; (6): 63–68 (in Russian) 

[85]

Hasibeder AStein PBrandwijk RSchild HRadsak MP. Evaluation and validation of the detection of soluble triggering receptor expressed on myeloid cells 1 by enzyme-linked immunosorbent assay. Sci Rep 20155: 15381

[86]

Essa ESElzorkany KM. sTREM-1 in patients with chronic kidney disease on hemodialysis. APMIS 2015123(11): 969–974

[87]

Masekela RAnderson Rde Boeck KVreys MSteel HCOlurunju SGreen RJ. Expression of soluble triggering receptor expressed on myeloid cells-1 in childhood CF and non-CF bronchiectasis. Pediatr Pulmonol 201550(4): 333–339

[88]

Molad YOfer-Shiber SPokroy-Shapira EOren SShay-Aharoni HBabai I. Soluble triggering receptor expressed on myeloid cells-1 is a biomarker of anti-CCP-positive, early rheumatoid arthritis. Eur J Clin Invest 201545(6): 557–564

[89]

Choi STKang EJHa YJSong JS. Levels of plasma-soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) are correlated with disease activity in rheumatoid arthritis. J Rheumatol 201239(5): 933–938

[90]

Lee JLee SYLee JLee JBaek SLee DGKim EKLee SHCho MLKwok SKJu JHPark SH. Monosodium urate crystal-induced triggering receptor expressed on myeloid cells 1 is associated with acute gouty inflammation. Rheumatology (Oxford) 201655(1): 156–161

[91]

Kwofie LRapoport BLFickl HMeyer PWRheeder PHlope HAnderson RTintinger GR. Evaluation of circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) to predict risk profile, response to antimicrobial therapy, and development of complications in patients with chemotherapy-associated febrile neutropenia: a pilot study. Ann Hematol 201291(4): 605–611

[92]

Park JJCheon JHKim BYKim DHKim ESKim TILee KRKim WH. Correlation of serum-soluble triggering receptor expressed on myeloid cells-1 with clinical disease activity in inflammatory bowel disease. Dig Dis Sci 200954(7): 1525–1531

[93]

Saurer LRihs SBirrer MSaxer-Seculic NRadsak MMueller C; Swiss IBD Cohort Study. Elevated levels of serum-soluble triggering receptor expressed on myeloid cells-1 in patients with IBD do not correlate with intestinal TREM-1 mRNA expression and endoscopic disease activity. J Crohn’s Colitis 20126(9): 913–923

[94]

Hermus LSchuitemaker JHTio RABreek JCSlart RHde Boef EZeebregts CJ. Novel serum biomarkers in carotid artery stenosis: useful to identify the vulnerable plaque? Clin Biochem 201144(16): 1292–1298

[95]

Liao RSun TWYi YWu HLi YWWang JXZhou JShi YHCheng YFQiu SJFan J. Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci 2012103(6): 984–992

[96]

Duan MWang ZCWang XYShi JYYang LXDing ZBGao QZhou JFan J. TREM-1, an inflammatory modulator, is expressed in hepatocellular carcinoma cells and significantly promotes tumor progression. Ann Surg Oncol 201522(9): 3121–3129

[97]

Yuan ZMehta HJMohammed KNasreen NRoman RBrantly MSadikot RT. TREM-1 is induced in tumor associated macrophages by cyclo-oxygenase pathway in human non-small cell lung cancer. PLoS One 20149(5): e94241

[98]

Liu YWang CHLi DLZhang SCPeng YPPeng JXSong YQi STPan J. TREM-1 expression in craniopharyngioma and Rathke’s cleft cyst: its possible implication for controversial pathology. Oncotarget 20167(31): 50564–50574

[99]

Kelker MSFoss TRPeti WTeyton LKelly JWWüthrich KWilson IA. Crystal structure of human triggering receptor expressed on myeloid cells 1 (TREM-1) at 1.47 A. J Mol Biol 2004342(4): 1237–1248

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (214KB)

2989

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/