CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes

Jiangnan Liu , Bin Yi , Zhe Zhang , Yi Cao

Front. Med. ›› 2016, Vol. 10 ›› Issue (2) : 204 -211.

PDF (1013KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (2) : 204 -211. DOI: 10.1007/s11684-016-0443-1
RESEARCH ARTICLE
RESEARCH ARTICLE

CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes

Author information +
History +
PDF (1013KB)

Abstract

CD176 (Thomsen-Friedenreich antigen) is a tumor-associated carbohydrate epitope (glycotope) functionally involved in blood spread and liver metastasis of cancer cells by mediating the adhesion of cancer cells to endothelial cells and hepatocytes, respectively. CD176 could be a promising target for antitumor immunotherapy. We applied B lymphocytes obtained from mice immunized with CD176 antigen and constructed a phage display library. A positive clone of CD176 single-chain variable antibody fragment (scFv) was successfully screened from this library. The CD176 scFv was expressed in Escherichia coli and purified. The purified scFv can bind to the natural CD176 expressed on the surface of cancer cells. Furthermore, the CD176 scFv inhibits the adhesion of CD176+ cancer cells to endothelial cells and hepatocytes. This CD176 scFv provides a basis for future development of recombinant CD176-specific antibodies that can be used in therapeutic application.

Keywords

CD176 / Thomsen-Friedenreich antigen / scFv / cancer / therapy / adhesion / metastasis

Cite this article

Download citation ▾
Jiangnan Liu, Bin Yi, Zhe Zhang, Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes. Front. Med., 2016, 10(2): 204-211 DOI:10.1007/s11684-016-0443-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Little M, Kipriyanov SM, Le Gall F, Moldenhauer G. Of mice and men: hybridoma and recombinant antibodies. Immunol Today 2000; 21(8): 364–370

[2]

Dübel S. Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 2007; 74(4): 723–729

[3]

Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U. Thomsen-Friedenreich antigen: the “hidden” tumor antigen. Adv Exp Med Biol 2003; 535: 147–162

[4]

Cao Y, Merling A, Karsten U, Schwartz-Albiez R. Expression of Thomsen-Friedenreich-related carbohydrate antigens on human leukemia cells. In: Mason D et al. Leucocyte Typing VII. Oxford: Oxford University Press, 2002; 204–205

[5]

Cao Y, Stosiek P, Springer GF, Karsten U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 1996; 106(2): 197–207

[6]

Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol 2011; 92(2): 97–105

[7]

Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL, Quinn TP. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61(12): 4851–4857

[8]

Cao Y, Karsten UR, Liebrich W, Haensch W, Springer GF, Schlag PM. Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation. Cancer 1995; 76(10): 1700–1708

[9]

Cao Y, Merling A, Karsten U, Goletz S, Punzel M, Kraft R, Butschak G, Schwartz-Albiez R. Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int J Cancer 2008; 123(1): 89–99

[10]

Yi B, Zhang M, Schwartz-Albiez R, Cao Y. Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol 2011; 38(6): 1565–1573

[11]

Yi B, Zhang Z, Zhang M, Schwartz-Albiez R, Cao Y. CD176 antiserum treatment leads to a therapeutic response in a murine model of leukemia. Oncol Rep 2013; 30(4): 1841–1847

[12]

Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228(4705): 1315–1317

[13]

Chan CE, Lim AP, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26(12): 649–657

[14]

McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301): 552–554

[15]

Larsen SA, Meldgaard T, Lykkemark S, Mandrup OA, Kristensen P. Selection of cell-type specific antibodies on tissue-sections using phage display. J Cell Mol Med 2015; 19(8): 1939–1948

[16]

Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126–1136

[17]

Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9): 1105–1116

[18]

Karsten U, Butschak G, Cao Y, Goletz S, Hanisch FG. A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma 1995; 14(1): 37–44

[19]

Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998; 273(34): 21769–21776

[20]

Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 2010; 651: 177–209

[21]

Yuasa N, Zhang W, Goto T, Sakaue H, Matsumoto-Takasaki A, Kimura M, Ohshima H, Tsuchida Y, Koizumi T, Sakai K, Kojima T, Yamamoto K, Nakata M, Fujita-Yamaguchi Y. Production of anti-carbohydrate antibodies by phage display technologies: potential impairment of cell growth as a result of endogenous expression. J Biol Chem 2010; 285(40): 30587–30597

[22]

Arjmand R, Fard SS, Saberi S, Tolouei S, Khamesipour A, Hejazi SH. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Adv Biomed Res 2015; 4(1): 128

[23]

Madorsky Rowdo FP, Baron A, Urrutia M, Mordoh J. Immunotherapy in cancer: a combat between tumors and the immune system; you win some, you lose some. Front Immunol 2015; 6: 127

[24]

Fleuren ED, Versleijen-Jonkers YM, Heskamp S, van Herpen CM, Oyen WJ, van der Graaf WT, Boerman OC. Theranostic applications of antibodies in oncology. Mol Oncol 2014; 8(4): 799–812

[25]

Rabu C, McIntosh R, Jurasova Z, Durrant L. Glycans as targets for therapeutic antitumor antibodies. Future Oncol 2012; 8(8): 943–960

[26]

Fujita-Yamaguchi Y. Production of single-chain variable-fragments against carbohydrate antigens. Antibodies (Basel) 2014; 3(1): 155–168

[27]

Ravn P, Stahn R, Danielczyk A, Faulstich D, Karsten U, Goletz S. The Thomsen-Friedenreich disaccharide as antigen for in vivo tumor targeting with multivalent scFvs. Cancer Immunol Immunother 2007; 56(9): 1345–1357

[28]

Yuasa N, Koyama T, Fujita-Yamaguchi Y. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies. Biosci Trends 2014; 8(1): 24–31

[29]

Cao Y, Schlag PM, Karsten U. Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: apolar localization corresponds to malignant transformation. Virchows Arch 1997; 431(3): 159–166

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1013KB)

Supplementary files

FMD-16209-of-CY_suppl_1

2814

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/