A specific tsRNA in serum from patients with nasopharyngeal carcinoma: 5′tiRNA-32-ValAAC-2 mediates malignance of nasopharyngeal carcinoma cells

Qi Tang , Yao Wu , Lin Chen , Qunying Jia , Yingchun He , Faqing Tang

Front. Med. ››

PDF (6137KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1175-x
RESEARCH ARTICLE

A specific tsRNA in serum from patients with nasopharyngeal carcinoma: 5′tiRNA-32-ValAAC-2 mediates malignance of nasopharyngeal carcinoma cells

Author information +
History +
PDF (6137KB)

Abstract

Early diagnosis is vitally important for effective treatment of nasopharyngeal carcinoma (NPC). Nevertheless, the exact pathogenic mechanisms of NPC remain unclear, and early diagnosis of NPC is still limited. Herein, we showed that a specific tsRNA for NPC, 5′tiRNA-32-ValAAC-2, is a novel pathogenic factor and has potential diagnostic value for NPC screening. In this study, small RNA microarray profiling and array hybridization were used to detect expression spectrums of tsRNAs in the sera of newly diagnosed NPC patients. The upregulated tsRNAs were validated using RT-qPCR, and their clinical significance in NPC diagnosis was analyzed. Furthermore, the most highly expressed tsRNA, was further investigated. 5′tiRNA-32-ValAAC-2 could serve as a potential diagnostic biomarker for NPC. Subsequently, the effect of 5′tiRNA-32-ValAAC-2 on the growth and invasion of NPC cells was investigated. The results indicated that overexpression of 5′tiRNA-32-ValAAC-2 promoted NPC cells proliferation, migration, and invasion. In contrast, the inhibition of 5′tiRNA-32-ValAAC-2 suppressed NPC cells proliferation, migration and invasion. TargetScan and miRanda analyses revealed that UGT2B7, SYNPO2, ZNF44, PDHB, and UFM1 might serve as downstream target-genes of 5′tiRNA-32-ValAAC-2. In conclusion, 5′tiRNA-32-ValAAC-2 could potentially be a novel pathogenic factor for NPC, and it functions as a diagnostic biomarker in the primary diagnosis of NPC.

Keywords

5′tiRNA-32-ValAAC-2 / tsRNA / nasopharyngeal carcinoma / diagnosis / biomarker

Cite this article

Download citation ▾
Qi Tang, Yao Wu, Lin Chen, Qunying Jia, Yingchun He, Faqing Tang. A specific tsRNA in serum from patients with nasopharyngeal carcinoma: 5′tiRNA-32-ValAAC-2 mediates malignance of nasopharyngeal carcinoma cells. Front. Med. DOI:10.1007/s11684-025-1175-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Filho AM , Laversanne M , Ferlay J , Colombet M , Piñeros M , Znaor A , Parkin DM , Soerjomataram I , Bray F . The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer 2025; 156(7): 1336–1346

[2]

Han B , Zheng R , Zeng H , Wang S , Sun K , Chen R , Li L , Wei W , He J . Cancer incidence and mortality in China, 2022. J Natl Cancer Cent 2024; 4(1): 47–53

[3]

Chen YP , Chan ATC , Le QT , Blanchard P , Sun Y , Ma J . Nasopharyngeal carcinoma. Lancet 2019; 394(10192): 64–80

[4]

Zhang X , Chen Y , Liang J , Yang Y , Chen H , Chen Z , Li M , Chen S , Chen T , He H , Liu Y , Liu Z , Han L , Wu D , Zou Z , Qu Y , Li M , Stoneking M , Fu Q , Xu S , Zeng YX , Ma L , Liu J , Xu M , Zhai W . Out-of-Africa migration and clonal expansion of a recombinant Epstein-Barr virus drives frequent nasopharyngeal carcinoma in southern China. Natl Sci Rev 2024; 12(4): nwae438

[5]

Li H , Wang X , Sun A , Liu W , Lv R , Zhang M , Xing Z , Ma S , Liu Y , Zhang K . tRF-1: 28-Val-CAC-2 promotes the development of nasopharyngeal cancer by targeting EPHB2. Front Oncol 2025; 15: 1564601

[6]

Lu Z , Su K , Wang X , Zhang M , Ma S , Li H , Qiu Y . Expression profiles of tRNA-derived small RNAs and their potential roles in primary nasopharyngeal carcinoma. Front Mol Biosci 2021; 8: 780621

[7]

Chen Q , Li D , Jiang L , Wu Y , Yuan H , Shi G , Liu F , Wu P , Jiang K . Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: current state and future perspectives. Cancer Lett 2024; 587: 216701

[8]

Li Z , Zhang B , Pan Y , Weng Q , Hu K . Emerging roles of tsRNAs in programmed cell death and disease therapeutics: challenges, opportunities, and future directions. Noncoding RNA Res 2025; 15: 65–73

[9]

Phizicky EM , Hopper AK . tRNA biology charges to the front. Genes Dev 2010; 24(17): 1832–1860

[10]

Frank DN , Pace NR . Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 1998; 67(1): 153–180

[11]

Dubrovsky EB , Dubrovskaya VA , Levinger L , Schiffer S , Marchfelder A . Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res 2004; 32(1): 255–262

[12]

Maraia RJ , Lamichhane TN . 3′ processing of eukaryotic precursor tRNAs. Wiley Interdiscip Rev RNA 2011; 2(3): 362–375

[13]

Xie Y , Yao L , Yu X , Ruan Y , Li Z , Guo J . Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5(1): 109

[14]

Yamasaki S , Ivanov P , Hu GF , Anderson P . Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1): 35–42

[15]

Fu M , Gu J , Wang M , Zhang J , Chen Y , Jiang P , Zhu T , Zhang X . Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22(1): 30

[16]

Tao EW , Cheng WY , Li WL , Yu J , Gao QY . tiRNAs: A novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. J Cell Physiol 2020; 235(2): 683–690

[17]

Shen Y , Yu X , Zhu L , Li T , Yan Z , Guo J . Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J Mol Med (Berl) 2018; 96(11): 1167–1176

[18]

Zhu L , Ge J , Li T , Shen Y , Guo J . tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett 2019; 452: 31–37

[19]

Liao JY , Ma LM , Guo YH , Zhang YC , Zhou H , Shao P , Chen YQ , Qu LH . Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 2010; 5(5): e10563

[20]

Kumar P , Kuscu C , Dutta A . Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41(8): 679–689

[21]

Yu X , Xie Y , Zhang S , Song X , Xiao B , Yan Z . tRNA-derived fragments: mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Theranostics 2021; 11(1): 461–469

[22]

Kumar P , Anaya J , Mudunuri SB , Dutta A . Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12(1): 78

[23]

Wang Q , Pan Z , Liang S , Shi Y , Dong G , Xu L , Mao Q , Jiang F . Transfer RNA-derived small RNAs (tsRNAs): a rising star in liquid biopsy. Genes Dis 2025; 12(5): 101608

[24]

Uchida Y , Chiba T , Kurimoto R , Asahara H . Post-transcriptional regulation of inflammation by RNA-binding proteins via cis-elements of mRNAs. J Biochem 2019; 166(5): 375–382

[25]

Boskovic A , Bing XY , Kaymak E , Rando OJ . Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev 2020; 34(1-2): 118–131

[26]

Kim HK . Transfer RNA-derived small non-coding RNA: dual regulator of protein synthesis. Mol Cells 2019; 42(10): 687–692

[27]

Chen Q , Zhang X , Shi J , Yan M , Zhou T . Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790–804

[28]

Li D , Gao X , Ma X , Wang M , Cheng C , Xue T , Gao F , Shen Y , Zhang J , Liu Q . Aging-induced tRNAGlu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab 2024; 36(5): 1059–1075.e9

[29]

Fan Y , Pavani KC , Smits K , Van Soom A , Peelman L . tRNAGlu-derived fragments from embryonic extracellular vesicles modulate bovine embryo hatching. J Anim Sci Biotechnol 2024; 15(1): 23

[30]

Xiong Q , Zhang Y , Xu Y , Yang Y , Zhang Z , Zhou Y , Zhang S , Zhou L , Wan X , Yang X , Zeng Z , Liu J , Zheng Y , Han J , Zhu Q . tiRNA-Val-CAC-2 interacts with FUBP1 to promote pancreatic cancer metastasis by activating c-MYC transcription. Oncogene 2024; 43(17): 1274–1287

[31]

Tan L , Wu X , Tang Z , Chen H , Cao W , Wen C , Zou G , Zou H . The tsRNAs (tRFdb-3013a/b) serve as novel biomarkers for colon adenocarcinomas. Aging (Albany NY) 2024; 16(5): 4299–4326

[32]

Xu T , Yuan J , Song F , Zhang N , Gao C , Chen Z . Exploring the functional role of tRF-39–8HM2OSRNLNKSEKH9 in hepatocellular carcinoma. Heliyon 2024; 10(5): e27153

[33]

Ding M , Zhou W , Chen W , Mo W , Guo X , Li Y , Ji C , Liu G , Diao W , Guo H . Plasma tsRNAs as novel diagnostic biomarkers for renal cell carcinoma. Clin Transl Med 2024; 14(2): e1575

[34]

Xu J , Wang Y , Li X , Zheng M , Li Y , Zhang W . Clinical value assessment for serum hsa_tsr013526 in the diagnosis of gastric carcinoma. Environ Toxicol 2024; 39(5): 2753–2767

[35]

Liu L , Xu Z , Dai X , Zhou X , Chen L , Luan C , Huang D , Chen H , Zhang J , Hu Y , Chen K . Mechanistic insights into 5′-tiRNA-His-GTG mediated activation of the JNK pathway in skin photoaging. Aging Cell 2025; 24(7): e70049

[36]

Jirström E , Matveeva A , Baindoor S , Donovan P , Ma Q , Morrissey EP , Arijs I , Boeckx B , Lambrechts D , Garcia-Munoz A , Dillon ET , Wynne K , Ying Z , Matallanas D , Hogg MC , Prehn JHM . Effects of ALS-associated 5′tiRNAGly-GCC on the transcriptomic and proteomic profile of primary neurons in vitro. Exp Neurol 2025; 385: 115128

[37]

XuNHuangJWangYLiuYJiangYZhouWShengJZhangL. 5′-tiRNA-Lys maintains intestinal epithelial homeostasis by EWSR1-dependent suppression of miR-125a and autophagy activation. Acta Biochim Biophys Sin (Shanghai) 2025; [Epub ahead of print] doi: 10.3724/abbs.2025074

[38]

Tzur Y , Winek K , Madrer N , Dubnov S , Bennett ER , Greenberg DS , Hanin G , Gammal A , Tam J , Arkin IT , Paldor I , Soreq H . Lysine tRNA fragments and miR-194-5p co-regulate hepatic steatosis via β-Klotho and perilipin 2. Mol Metab 2024; 79: 101856

[39]

Xu Z , Liu L , Dai X , Zhou X , Chen L , Chen H , Luan C , Huang D , Zhang J , Hu Y , Chen K , Gu H . 5'tiRNA-Glu-TTC targets TRPV3 and activates the PI3K/AKT signaling pathway to modulate skin photoaging. Noncoding RNA Res 2025; 15: 29–43

[40]

Liu R , Zhang L , Hu P , Liu A , Zhang Y , Liu Q , Guo J , Han D , Yue H , Zhang B . 5′tiRNA-35-GlyTCC-3 and 5′tiRNA-33-CysGCA-11 target BMP6, CUL1 and SPR of non-syndromic cleft palate. BMC Oral Health 2025; 25(1): 307

[41]

Wang J , Liu X , Cui W , Gao Y , Zhang C , Duan C . Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarcinoma. Cancer Cell Int 2022; 22(1): 59

[42]

Xu C , Fu Y . Expression profiles of tRNA-derived fragments and their potential roles in multiple myeloma. OncoTargets Ther 2021; 14: 2805–2814

[43]

Veneziano D , Tomasello L , Balatti V , Palamarchuk A , Rassenti LZ , Kipps TJ , Pekarsky Y , Croce CM . Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2019; 116(48): 24252–24258

[44]

Mendonca T , Urban R , Lucken K , Coney G , Kad NM , Tassieri M , Wright AJ , Booth DG . The mitotic chromosome periphery modulates chromosome mechanics. Nat Commun 2025; 16(1): 6399

[45]

Andrés-Sánchez N , Fisher D , Krasinska L . Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci 2022; 135(11): jcs258932

[46]

Mrouj K , Andrés-Sánchez N , Dubra G , Singh P , Sobecki M , Chahar D , Al Ghoul E , Aznar AB , Prieto S , Pirot N , Bernex F , Bordignon B , Hassen-Khodja C , Villalba M , Krasinska L , Fisher D . Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci USA 2021; 118(10): e2026507118

[47]

Yang C , Zhang J , Ding M , Xu K , Li L , Mao L , Zheng J . Ki67 targeted strategies for cancer therapy. Clin Transl Oncol 2018; 20(5): 570–575

[48]

Gürsoy G . CRP/albumin ratio and WBC values correlate with Ki-67 and survival in glioblastoma multiforme. Front Oncol 2025; 15: 1612212

[49]

Tian K , Tong P , Wu K , Azhar A , Fang Y , Xu N , Wang R . Development of a model to predict Ki-67 expression status in non-Hodgkin’s lymphoma based on PET radiomics. Front Oncol 2025; 15: 1567152

[50]

Chen S , Dai J , Zhao J , Han S , Zhang X , Chang J , Jiang D , Zhang H , Wang P , Hu S . Synthetic MRI combined with clinicopathological characteristics for pretreatment prediction of chemoradiotherapy response in advanced nasopharyngeal carcinoma. Korean J Radiol 2025; 26(2): 135–145

[51]

Guo C , Luo J , Liang M , Xiao J . Correlation of 18 F-FDG PET/CT metabolic parameters with Ki-67 expression and tumor staging in nasopharyngeal carcinoma. Nucl Med Commun 2025; 46(5): 437–443

[52]

Xu J , Zhou Y , He S , Wang Y , Ma J , Li C , Liu Z , Zhou X . Activation of the YY1–UGT2B7 axis promotes mammary estrogen homeostasis dysregulation and exacerbates breast tumor metastasis. Drug Metab Dispos 2024; 52(5): 408–421

[53]

Ondo K , Isono M , Nakano M , Hashiba S , Fukami T , Nakajima M . The N6-methyladenosine modification posttranscriptionally regulates hepatic UGT2B7 expression. Biochem Pharmacol 2021; 189: 114402

[54]

Ye G , Tu L , Li Z , Li X , Zheng X , Song Y . SYNPO2 promotes the development of BLCA by upregulating the infiltration of resting mast cells and increasing the resistance to immunotherapy. Oncol Rep 2024; 51(1): 14

[55]

Cheng X , Xu J , Gu H , Chen G , Wu L . ALDH1+ tumor stem cells promote the progression of malignant fibrous tissue sarcoma by inhibiting SYNPO2 through hsa-mir-206. Exp Cell Res 2024; 441(1): 114167

[56]

Esposito MR , Binatti A , Pantile M , Coppe A , Mazzocco K , Longo L , Capasso M , Lasorsa VA , Luksch R , Bortoluzzi S , Tonini GP . Somatic mutations in specific and connected subpathways are associated with short neuroblastoma patients’ survival and indicate proteins targetable at onset of disease. Int J Cancer 2018; 143(10): 2525–2536

[57]

Wu J , Wang S , Liu Y , Zhang T , Wang X , Miao C . Integrated single-cell and bulk characterization of cuproptosis key regulator PDHB and association with tumor microenvironment infiltration in clear cell renal cell carcinoma. Front Immunol 2023; 14: 1132661

[58]

Chi C , Hou W , Zhang Y , Chen J , Shen Z , Chen Y , Li M . PDHB-AS suppresses cervical cancer progression and cisplatin resistance via inhibition on Wnt/β-catenin pathway. Cell Death Dis 2023; 14(2): 90

[59]

Ke D , Guo HH , Jiang N , Shi RS , Fan TY . Inhibition of UFM1 expression suppresses cancer progression and is linked to the dismal prognosis and immune infiltration in oral squamous cell carcinoma. Aging (Albany NY) 2023; 15(22): 13059–13076

[60]

Mao M , Chen Y , Yang J , Cheng Y , Xu L , Ji F , Zhou J , Zhang X , Li Z , Chen C , Ju S , Zhang J , Wang L . Modification of PLAC8 by UFM1 affects tumorous proliferation and immune response by impacting PD-L1 levels in triple-negative breast cancer. J Immunother Cancer 2022; 10(12): e005668

[61]

Xie L , Zhang K , You B , Yin H , Zhang P , Shan Y , Gu Z , Zhang Q . Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62(6): 803–819

[62]

Hu W , Wang Y , Zhang Q , Luo Q , Huang N , Chen R , Tang X , Li X , Luo H . MicroRNA-199a-3p suppresses the invasion and metastasis of nasopharyngeal carcinoma through SCD1/PTEN/AKT signaling pathway. Cell Signal 2023; 110: 110833

[63]

Zhang C , Chen W , Pan S , Zhang S , Xie H , Zhang Z , Lei W , Bao L , You Y . SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR. Cell Death Discov 2023; 9(1): 2

[64]

Tian Y , Ai M , Liu C , Wu Y , Khan M , Wang B , Long H , Huang C , Lin J , Xu A , Li R , Cen B , Qiu W , Xie G , Yuan Y . Upregulated long non-coding RNA lnc-MRPL39-2: 1 induces the growth and invasion of nasopharyngeal carcinoma by binding to HuR and stabilizing β-catenin mRNA. Int J Biol Sci 2023; 19(8): 2349–2365

[65]

Liu H , Chen Q , Zheng W , Zhou Y , Bai Y , Pan Y , Zhang J , Shao C . LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 axis. Int J Mol Sci 2023; 24(3): 3047

[66]

Peng Y , Zhang Y , Liu Y , Dong Z , Wang T , Peng F , Di W , Zong D , Du M , Zhou H , He X . LINC01376 promotes nasopharyngeal carcinoma tumorigenesis by competitively binding to the SP1/miR-4757/IGF1 axis. IUBMB Life 2023; 75(9): 702–716

[67]

Mo Y , Wang Y , Zhang S , Xiong F , Yan Q , Jiang X , Deng X , Wang Y , Fan C , Tang L , Zhang S , Gong Z , Wang F , Liao Q , Guo C , Li Y , Li X , Li G , Zeng Z , Xiong W . Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol Cancer 2021; 20(1): 112

[68]

Li Q , Zhao YH , Xu C , Liang YL , Zhao Y , He QM , Li JY , Chen KL , Qiao H , Liu N , Ma J , Chen L , Li YQ . Chemotherapy-induced senescence reprogramming promotes nasopharyngeal carcinoma metastasis by circRNA-mediated PKR activation. Adv Sci (Weinh) 2023; 10(8): 2205668

[69]

Hong X , Li Q , Li J , Chen K , He Q , Zhao Y , Liang Y , Zhao Y , Qiao H , Liu N , Ma J , Li Y . CircIPO7 promotes nasopharyngeal carcinoma metastasis and cisplatin chemoresistance by facilitating YBX1 nuclear localization. Clin Cancer Res 2022; 28(20): 4521–4535

[70]

Mao M , Chen W , Huang X , Ye D . Role of tRNA-derived small RNAsn (tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21(1): 178

[71]

Chen Y , Tang Y , Hou S , Luo J , Chen J , Qiu H , Chen W , Li K , He J , Li J . Differential expression spectrum and targeted gene prediction of tRNA-derived small RNAs in idiopathic pulmonary arterial hypertension. Front Mol Biosci 2023; 10: 1204740

[72]

Zhu L , Li J , Gong Y , Wu Q , Tan S , Sun D , Xu X , Zuo Y , Zhao Y , Wei YQ , Wei XW , Peng Y . Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019; 18(1): 74

[73]

Mo X , Du S , Chen X , Wang Y , Liu X , Zhang C , Zhu C , Ding L , Li Y , Tong Y , Ju Q , Qu D , Tan F , Wei F , Cai Q . Lactate induces production of the tRNAHis half to promote B-lymphoblastic cell proliferation. Mol Ther 2020; 28(11): 2442–2457

[74]

Bayazit MB , Jacovetti C , Cosentino C , Sobel J , Wu K , Brozzi F , Rodriguez-Trejo A , Stoll L , Guay C , Regazzi R . Small RNAs derived from tRNA fragmentation regulate the functional maturation of neonatal β cells. Cell Rep 2022; 40(2): 111069

[75]

Ham J , Park W , Song J , Kim HS , Song G , Lim W , Park SJ , Park S . Fraxetin reduces endometriotic lesions through activation of ER stress, induction of mitochondria-mediated apoptosis, and generation of ROS. Phytomedicine 2024; 123: 155187

[76]

Tao EW , Wang HL , Cheng WY , Liu QQ , Chen YX , Gao QY . A specific tRNA half, 5′tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res 2021; 40(1): 67

[77]

Song J , Ham J , Park W , Song G , Lim W . Osthole impairs mitochondrial metabolism and the autophagic flux in colorectal cancer. Phytomedicine 2024; 125: 155383

[78]

Yang C , Song J , Park S , Ham J , Park W , Park H , An G , Hong T , Kim HS , Song G , Lim W . Targeting thymidylate synthase and tRNA-derived non-coding RNAs improves therapeutic sensitivity in colorectal cancer. Antioxidants 2022; 11(11): 2158

[79]

Hu Y , Cai A , Xu J , Feng W , Wu A , Liu R , Cai W , Chen L , Wang F . An emerging role of the 5′ termini of mature tRNAs in human diseases: current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868(2): 166314

[80]

Yao J , Yao W , Zhu JY , Liu Y , Liu JH , Ji YK , Ni XS , Mu W , Yan B . Targeting tRNA-derived non-coding RNA alleviates diabetes-induced visual impairment through protecting retinal neurovascular unit. Adv Sci (Weinh) 2025; 12(1): e2411042

[81]

Xu R , Du A , Deng X , Du W , Zhang K , Li J , Lu Y , Wei X , Yang Q , Tang H . tsRNA-GlyGCC promotes colorectal cancer progression and 5-FU resistance by regulating SPIB. J Exp Clin Cancer Res 2024; 43(1): 230

[82]

Shen L , Liao T , Chen Q , Lei Y , Wang L , Gu H , Qiu Y , Zheng T , Yang Y , Wei C , Chen L , Zhao Y , Niu L , Zhang S , Zhu Y , Li M , Wang J , Li X , Gan M , Zhu L . tRNA-derived small RNA, 5′tiRNA-Gly-CCC, promotes skeletal muscle regeneration through the inflammatory response. J Cachexia Sarcopenia Muscle 2023; 14(2): 1033–1045

[83]

Zong T , Yang Y , Lin X , Jiang S , Zhao H , Liu M , Meng Y , Li Y , Zhao L , Tang G , Gong K , Wang Z , Yu T . 5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. Mol Ther Nucleic Acids 2021; 26: 295–306

[84]

Wu C , Liu D , Zhang L , Wang J , Ding Y , Sun Z , Wang W . 5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front Med 2023; 17(3): 476–492

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6137KB)

Supplementary files

Supplementary_Flie1

Supplementary_Flie2

Supplementary_Flie3

Supplementary_Table_1

Supplementary_Table_2

Supplementary_Table_3

Supplementary_Table_4

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/