CYP4F11 promotes lung cancer progression through the miR-195/ME2 pathway

Shan Shi , Jiao Zhou , Qiuyun Luo , Hongtao Chen , Jing Yang , Liqiong Yang , Lin Zhang , Hongyu Zhang , Dajun Yang

Front. Med. ››

PDF (6982KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1166-y
RESEARCH ARTICLE

CYP4F11 promotes lung cancer progression through the miR-195/ME2 pathway

Author information +
History +
PDF (6982KB)

Abstract

The cytochrome P450 enzyme CYP4F11, a pivotal regulator of fatty acid metabolism and drug metabolism, exhibits significantly overexpression in non-small cell lung cancer (NSCLC) and is associated with poor clinical outcomes. Through integrated analysis of TCGA/GEO datasets and immunohistochemistry validation of 235 NSCLC specimens, we established CYP4F11 as a novel prognostic biomarker. Functional studies demonstrated that CYP4F11 knockdown markedly impaired NSCLC cell proliferation, clonogenicity, and migration in vitro, moreover xenograft models confirmed its tumor-promoting role in vivo. Mechanistically, we identified CYP4F11 as a direct target of tumor suppressor miR-195 via 3′-UTR binding, with miR-195-mediated suppression of CYP4F11 leading to ubiquitin-proteasomal degradation of mitochondrial malic enzyme 2 (ME2) — a critical metabolic regulator in cancer cells. Metabolomic analyses revealed that CYP4F11 depletion disrupts mitochondrial malate metabolism, while rescue experiments confirmed ME2’s pivotal role in mediating CYP4F11’s oncogenic effects. Our findings elucidate the CYP4F11/miR-195/ME2 regulatory axis as a crucial determinant of NSCLC progression, highlighting CYP4F11 as both a prognostic indicator and a potential therapeutic target through modulation of cancer cell metabolism.

Keywords

CYP4F11 / miR-195 / ME2 / ubiquitination degradation

Cite this article

Download citation ▾
Shan Shi, Jiao Zhou, Qiuyun Luo, Hongtao Chen, Jing Yang, Liqiong Yang, Lin Zhang, Hongyu Zhang, Dajun Yang. CYP4F11 promotes lung cancer progression through the miR-195/ME2 pathway. Front. Med. DOI:10.1007/s11684-025-1166-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia C , Dong X , Li H , Cao M , Sun D , He S , Yang F , Yan X , Zhang S , Li N , Chen W . Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 2022; 135(5): 584–590

[2]

Li J , Kwok HF . Current strategies for treating NSCLC: from biological mechanisms to clinical treatment. Cancers (Basel) 2020; 12(6): 1587

[3]

Xu J , Tian L , Qi W , Lv Q , Wang T . Advancements in NSCLC: from pathophysiological insights to targeted Treatments. Am J Clin Oncol 2024; 47(6): 291–303

[4]

Elfaki I , Mir R , Almutairi FM , Duhier FMA . Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev 2018; 19(8): 2057–2070

[5]

Hashizume T , Imaoka S , Hiroi T , Terauchi Y , Fujii T , Miyazaki H , Kamataki T , Funae Y . cDNA cloning and expression of a novel cytochrome p450 (cyp4f12) from human small intestine. Biochem Biophys Res Commun 2001; 280(4): 1135–1141

[6]

Bylund J , Bylund M , Oliw EH . cDna cloning and expression of CYP4F12, a novel human cytochrome P450. Biochem Biophys Res Commun 2001; 280(3): 892–897

[7]

Kalsotra A , Cui X , Anakk S , Hinojos CA , Doris PA , Strobel HW . Renal localization, expression, and developmental regulation of P450 4F cytochromes in three substrains of spontaneously hypertensive rats. Biochem Biophys Res Commun 2005; 338(1): 423–431

[8]

Christmas P , Carlesso N , Shang H , Cheng SM , Weber BM , Preffer FI , Scadden DT , Soberman RJ . Myeloid expression of cytochrome P450 4F3 is determined by a lineage-specific alternative promoter. J Biol Chem 2003; 278(27): 25133–25142

[9]

Bylund J , Hidestrand M , Ingelman-Sundberg M , Oliw EH . Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. J Biol Chem 2000; 275(29): 21844–21849

[10]

Cui X , Strobel HW . Cloning and characterization of the rat cytochrome P450 4F5 (CYP4F5) gene. Gene 2002; 297(1–2): 179–187

[11]

Zhang JE , Klein K , Jorgensen AL , Francis B , Alfirevic A , Bourgeois S , Deloukas P , Zanger UM , Pirmohamed M . Effect of genetic variability in the CYP4F2, CYP4F11, and CYP4F12 genes on liver mRNA levels and warfarin response. Front Pharmacol 2017; 8: 323

[12]

Cui X , Nelson DR , Strobel HW . A novel human cytochrome P450 4F isoform (CYP4F11): cDNA cloning, expression, and genomic structural characterization. Genomics 2000; 68(2): 161–166

[13]

Goldstein I , Rivlin N , Shoshana OY , Ezra O , Madar S , Goldfinger N , Rotter V . Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis 2013; 34(1): 190–198

[14]

Kalsotra A , Turman CM , Kikuta Y , Strobel HW . Expression and characterization of human cytochrome P450 4F11: putative role in the metabolism of therapeutic drugs and eicosanoids. Toxicol Appl Pharmacol 2004; 199(3): 295–304

[15]

Winterton SE , Capota E , Wang X , Chen H , Mallipeddi PL , Williams NS , Posner BA , Nijhawan D , Ready JM . Discovery of cytochrome P450 4F11 activated inhibitors of stearoyl coenzyme a desaturase. J Med Chem 2018; 61(12): 5199–5221

[16]

Theodoropoulos PC , Gonzales SS , Winterton SE , Rodriguez-Navas C , McKnight JS , Morlock LK , Hanson JM , Cross B , Owen AE , Duan Y , Moreno JR , Lemoff A , Mirzaei H , Posner BA , Williams NS , Ready JM , Nijhawan D . Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol 2016; 12(4): 218–225

[17]

Hsu MH , Savas U , Griffin KJ , Johnson EF . Human cytochrome p450 family 4 enzymes: function, genetic variation and regulation. Drug Metab Rev 2007; 39(2–3): 515–538

[18]

Choudhary MI , Nawaz SA , ul-Haq Z , Lodhi MA , Ghayur MN , Jalil S , Riaz N , Yousuf S , Malik A , Gilani AH , ur-Rahman A . Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 2005; 334(1): 276–287

[19]

Yi M , Cho SA , Min J , Kim DH , Shin JG , Lee SJ . Functional characterization of a common CYP4F11 genetic variant and identification of functionally defective CYP4F11 variants in erythromycin metabolism and 20-HETE synthesis. Arch Biochem Biophys 2017; 620: 43–51

[20]

Zhang T , Zhan Z , Chen Y , Chen J , Han W , Liang Z , Liu Q , Liu S , Tang L . Regulation of cytochrome P450 4F11 expression by liver X receptor alpha. Int Immunopharmacol 2021; 90: 107240

[21]

Wang Y , Bell JC , Keeney DS , Strobel HW . Gene regulation of CYP4F11 in human keratinocyte HaCaT cells. Drug Metab Dispos 2010; 38(1): 100–107

[22]

Liu J , Ren L , Li S , Li W , Zheng X , Yang Y , Fu W , Yi J , Wang J , Du G . The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11(9): 2783–2797

[23]

Wang T , Ren Y , Liu R , Ma J , Shi Y , Zhang L , Bu R . miR-195–5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. BioMed Res Int 2017; 2017: 7378148

[24]

Long Z , Wang Y . miR-195–5p suppresses lung cancer cell proliferation, migration, and invasion via FOXK1. 19 2020; 1533033820922587

[25]

Nunnari J , Suomalainen A . Mitochondria: in sickness and in health. Cell 2012; 148(6): 1145–1159

[26]

Jiang P , Du W , Mancuso A , Wellen KE , Yang X . Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493(7434): 689–693

[27]

Wang YP , Sharda A , Xu SN , van Gastel N , Man CH , Choi U , Leong WZ , Li X , Scadden DT . Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab 2021; 33(5): 1027–41.e8

[28]

Zhao M , Yao P , Mao Y , Wu J , Wang W , Geng C , Cheng J , Du W , Jiang P . Malic enzyme 2 maintains protein stability of mutant p53 through 2-hydroxyglutarate. Nat Metab 2022; 4(2): 225–238

[29]

Dey P , Baddour J , Muller F , Wu CC , Wang H , Liao WT , Lan Z , Chen A , Gutschner T , Kang Y , Fleming J , Satani N , Zhao D , Achreja A , Yang L , Lee J , Chang E , Genovese G , Viale A , Ying H , Draetta G , Maitra A , Wang YA , Nagrath D , DePinho RA . Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 2017; 542(7639): 119–123

[30]

Yang Y , Zhang Z , Li W , Si Y , Li L , Du W . αKG-driven RNA polymerase II transcription of cyclin D1 licenses malic enzyme 2 to promote cell-cycle progression. Cell Rep 2023; 42(7): 112770

[31]

Hanzl A , Winter GE . Targeted protein degradation: current and future challenges. Curr Opin Chem Biol 2020; 56: 35–41

[32]

Kwon YT , Ciechanover A . The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 2017; 42(11): 873–886

[33]

Sommer T , Wolf DH . The ubiquitin-proteasome-system. Biochim Biophys Acta Mol Cell Res 2014; 1843(1): 1

[34]

Paudel RR , Lu D , Roy Chowdhury S , Monroy EY , Wang J . Targeted protein degradation via lysosomes. Biochemistry 2023; 62(3): 564–579

[35]

Pickart CM . Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70(1): 503–533

[36]

Zheng N , Shabek N . Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 2017; 86(1): 129–157

[37]

Lucas X , Ciulli A . Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr Opin Struct Biol 2017; 44: 101–110

[38]

Ding XB , Wang XX , Xia DH , Liu H , Tian HY , Fu Y , Chen YK , Qin C , Wang JQ , Xiang Z , Zhang ZX , Cao QC , Wang W , Li JY , Wu E , Tang BS , Ma MM , Teng JF , Wang XJ . Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 2021; 27(3): 411–418

[39]

Sternson SM , Atasoy D , Betley JN , Henry FE , Xu S . An emerging technology framework for the neurobiology of appetite. Cell Metab 2016; 23(2): 234–253

[40]

Okun E , Dikshtein Y , Carmely A , Saida H , Frei G , Sela BA , Varshavsky L , Ofir A , Levy E , Albeck M , Sredni B . The organotellurium compound ammonium trichloro (dioxoethylene-o, o′) tellurate reacts with homocysteine to form homocystine and decreases homocysteine levels in hyperhomocysteinemic mice. FEBS J 2007; 274(12): 3159–3170

[41]

Cabral H , Matsumoto Y , Mizuno K , Chen Q , Murakami M , Kimura M , Terada Y , Kano MR , Miyazono K , Uesaka M , Nishiyama N , Kataoka K . Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011; 6(12): 815–823

[42]

Hildebrand D , Bode KA , Rieß D , Cerny D , Waldhuber A , Römmler F , Strack J , Korten S , Orth JHC , Miethke T , Heeg K , Kubatzky KF . Granzyme A produces bioactive IL-1β through a nonapoptotic inflammasome-independent pathway. Cell Rep 2014; 9(3): 910–917

[43]

Tang F , Quan Y , Xin ZT , Wrammert J , Ma MJ , Lv H , Wang TB , Yang H , Richardus JH , Liu W , Cao WC . Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 2011; 186(12): 7264–7268

[44]

Wang P , González MC , Hidalgo CA , Barabási AL . Understanding the spreading patterns of mobile phone viruses. Science 2009; 324(5930): 1071–1076

[45]

Xu J , Wang Q . Ejaculate economics: an experimental test in a moth. Biol Lett 2014; 10(1): 20131031

[46]

Losman JA , Looper RE , Koivunen P , Lee S , Schneider RK , McMahon C , Cowley GS , Root DE , Ebert BL , Kaelin WG Jr . (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339(6127): 1621–1625

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6982KB)

Supplementary files

Supplementary materials

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/