Azvudine remodels the local immunosuppressive microenvironment and exhibits sustained anti-tumor effects in combination with anti-PD-1 therapies

Limin Jia , Zhaoyang Wang , Jinfa Du , Zhigang Ren , Jiandong Jiang , Pan Li

Front. Med. ››

PDF (6774KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1164-0
RESEARCH ARTICLE

Azvudine remodels the local immunosuppressive microenvironment and exhibits sustained anti-tumor effects in combination with anti-PD-1 therapies

Author information +
History +
PDF (6774KB)

Abstract

The immunosuppressive tumor microenvironment (TME) undermines the efficacy of many cancer therapies. This study investigated the immunomodulatory and anti-tumor activity of Azvudine (FNC), alone or in combination with anti-PD-1 blockade. We established syngeneic tumor models in immunocompetent mice. Single-cell RNA sequencing, flow cytometry, and immunological assays were employed to analyze immune cell reconstitution and functional changes following FNC administration. FNC demonstrated dose- and time-dependent tumor inhibition. It significantly expanded memory T cells, natural killer (NK) cells, and CD8+ cytotoxic T lymphocytes, while reducing the abundance of myeloid-derived suppressor cells (MDSCs). Flow cytometry confirmed these immunological shifts, showing enhanced infiltration of effector immune cells within the TME. Moreover, FNC induced hallmark features of immunogenic cell death (ICD), including the release of damage-associated molecular patterns such as high-mobility group box 1 (HMGB1) and calreticulin. When combined with anti-PD-1 therapy, FNC produced a synergistic anti-tumor effect, leading to durable tumor remission in all treated mice. FNC remodels the TME by mitigating immunosuppression and amplifying anti-tumor immunity, offering a promising strategy to augment existing immunotherapies. Further clinical evaluation is warranted to ascertain the translational potential of FNC in diverse oncologic settings.

Keywords

immunosuppressive microenvironment / Azvudine / myeloid-derived suppressor cells / immunogenic cell death / anti-PD-1 therapy / tumor microenvironment

Cite this article

Download citation ▾
Limin Jia, Zhaoyang Wang, Jinfa Du, Zhigang Ren, Jiandong Jiang, Pan Li. Azvudine remodels the local immunosuppressive microenvironment and exhibits sustained anti-tumor effects in combination with anti-PD-1 therapies. Front. Med. DOI:10.1007/s11684-025-1164-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Groth C , Hu X , Weber R , Fleming V , Altevogt P , Utikal J , Umansky V . Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 2019; 120(1): 16–25

[2]

Umansky V , Sevko A . Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 2013; 6(2): 169–177

[3]

Zou Z , Lin H , Li M , Lin B . Tumor-associated macrophage polarization in the inflammatory tumor microenvironment. Front Oncol 2023; 13: 1103149

[4]

Huang A , Cao S , Tang L . The tumor microenvironment and inflammatory breast cancer. J Cancer 2017; 8(10): 1884–1891

[5]

Dong P , Yan Y , Fan Y , Wang H , Wu D , Yang L , Zhang J , Yin X , Lv Y , Zhang J , Hou Y , Liu F , Yu X . The role of myeloid-derived suppressor cells in the treatment of pancreatic cancer. Technol Cancer Res Treat 2022; 21: 15330338221142472

[6]

Joshi S , Sharabi A . Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235: 108114

[7]

Wang JC , Sun L . PD-1/PD-L1, MDSC pathways, and checkpoint inhibitor therapy in Ph(-) myeloproliferative neoplasm: a review. Int J Mol Sci 2022; 23(10): 5837

[8]

Anderson HG , Takacs GP , Harris DC , Kuang Y , Harrison JK , Stepien TL . Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. J Math Biol 2023; 88(1): 10

[9]

Fayzullina D , Kharwar RK , Acharya A , Buzdin A , Borisov N , Timashev P , Ulasov I , Kapomba B . FNC: an advanced anticancer therapeutic or just an underdog. Front Oncol 2022; 12: 820647

[10]

Zhao L , Li S , Zhong W . Mechanism of action of small-molecule agents in ongoing clinical trials for SARS-CoV-2: a review. Front Pharmacol 2022; 13: 840639

[11]

Zhang Y , Zhang R , Ding X , Peng B , Wang N , Ma F , Peng Y , Wang Q , Chang J . FNC efficiently inhibits mantle cell lymphoma growth. PLoS One 2017; 12(3): e0174112

[12]

Amiri M , Molavi O , Sabetkam S , Jafari S , Montazersaheb S . Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23(1): 200

[13]

Zhang JL , Li YH , Wang LL , Liu HQ , Lu SY , Liu Y , Li K , Liu B , Li SY , Shao FM , Wang K , Sheng N , Li R , Cui JJ , Sun PC , Ma CX , Zhu B , Wang Z , Wan YH , Yu SS , Che Y , Wang CY , Wang C , Zhang Q , Zhao LM , Peng XZ , Cheng Z , Chang JB , Jiang JD . Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct Target Ther 2021; 6(1): 414

[14]

de Souza SB , Cabral PGA , da Silva RM , Arruda RF , Cabral SPF , de Assis A , Viana AB Junior , Degrave WMS , Moreira ADS , Silva CG , Chang J , Lei P . Phase III, randomized, double-blind, placebo-controlled clinical study: a study on the safety and clinical efficacy of AZVUDINE in moderate COVID-19 patients. Front Med (Lausanne) 2023; 10: 1215916

[15]

Zhu KW . Efficacy and safety evaluation of Azvudine in the prospective treatment of COVID-19 based on four phase III clinical trials. Front Pharmacol 2023; 14: 1228548

[16]

Qi X , Yang Y , Gong B , Li Z , Liang D . Real-world effectiveness of azvudine for patients infected with the SARS-CoV-2 omicron subvariant BA. 5 in an intensive care unit. J Thorac Dis 2023; 15(9): 4925–4937

[17]

Sun L , Peng Y , Yu W , Zhang Y , Liang L , Song C , Hou J , Qiao Y , Wang Q , Chen J , Wu M , Zhang D , Li E , Han Z , Zhao Q , Jin X , Zhang B , Huang Z , Chai J , Wang JH , Chang J . Mechanistic insight into antiretroviral potency of 2′-deoxy-2′-beta-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention. J Med Chem 2020; 63(15): 8554–8566

[18]

Wu Y , Yi M , Niu M , Mei Q , Wu K . Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 2022; 21(1): 184

[19]

Ge Y , Cheng D , Jia Q , Xiong H , Zhang J . Mechanisms underlying the role of myeloid-derived suppressor cells in clinical diseases: good or bad. Immune Netw 2021; 21(3): e21

[20]

Chen DS , Mellman I . Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541(7637): 321–330

[21]

Sharma P , Hu-Lieskovan S , Wargo JA , Ribas A . Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168(4): 707–723

[22]

Cai Z , Guo H , Qian J , Liu W , Li Y , Yuan L , Zhou Y , Lin R , Xie X , Yang Q , Wu G , Li Q , Zhao L , Liu F , Wang J , Lu W . Effects of bone morphogenetic protein 4 on TGF-β1-induced cell proliferation, apoptosis, activation and differentiation in mouse lung fibroblasts via ERK/p38 MAPK signaling pathway. PeerJ 2022; 10: e13775

[23]

Ding M , Zhang Y , Yu N , Zhou J , Zhu L , Wang X , Li J . Augmenting immunogenic cell death and alleviating myeloid-derived suppressor cells by sono-activatable semiconducting polymer nanopartners for immunotherapy. Adv Mater 2023; 35(33): 2302508

[24]

Alghamri MS , Banerjee K , Mujeeb AA , Mauser A , Taher A , Thalla R , McClellan BL , Varela ML , Stamatovic SM , Martinez-Revollar G , Andjelkovic AV , Gregory JV , Kadiyala P , Calinescu A , Jimenez JA , Apfelbaum AA , Lawlor ER , Carney S , Comba A , Faisal SM , Barissi M , Edwards MB , Appelman H , Sun Y , Gan J , Ackermann R , Schwendeman A , Candolfi M , Olin MR , Lahann J , Lowenstein PR , Castro MG . Systemic delivery of an adjuvant CXCR4-CXCL12 signaling inhibitor encapsulated in synthetic protein nanoparticles for glioma immunotherapy. ACS Nano 2022; 16(6): 8729–8750

[25]

De Cicco P , Ercolano G , Ianaro A . The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol 2020; 11: 1680

[26]

Pfirschke C , Engblom C , Rickelt S , Cortez-Retamozo V , Garris C , Pucci F , Yamazaki T , Poirier-Colame V , Newton A , Redouane Y , Lin YJ , Wojtkiewicz G , Iwamoto Y , Mino-Kenudson M , Huynh TG , Hynes RO , Freeman GJ , Kroemer G , Zitvogel L , Weissleder R , Pittet MJ . Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016; 44(2): 343–354

[27]

Yi M , Zheng X , Niu M , Zhu S , Ge H , Wu K . Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022; 21(1): 28

RIGHTS & PERMISSIONS

The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (6774KB)

Supplementary files

Supplementary materials

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/